Breast cancer accounts for 15-18% of all deaths among women every year, with about 180,000 new cases being diagnosed every year. Even though the causes of breast cancer remain unknown, several lines of evidence suggest that accumulation of DNA damage coupled with defects in DNA repair play an important role in breast cancer. It has been speculated that DNA base damage may lead to mutations that subsequently can be carcinogenic. Of primary importance are the base lesions caused by reactive oxygen species (ROS). Cellular DNA is exposed to ROS either endogenously by cellular metabolism or through exogenous exposure to environmental mutagens. ROS induce a wide range of DNA lesions. Thymine glycol (Tg) and 8-hydroxyguanine (8-oxoG) are some of the most deleterious oxidative base lesions. Thymine glycol is a toxic lesion that blocks DNA replication and transcription, causing cell death. 8-oxoG is a premutagenic lesion. In order to avoid the harmful effects of 8-oxoG, organisms have developed mechanisms for repairing this damage. Studies using High Performance Liquid Chromatography and Gas Chromatography-Mass Spectrometry have revealed increased levels of 8-oxoG in invasive ductal breast carcinomas relative to normal breast tissue implicating oxidative damages in the etiology of breast cancer. It has been shown that 8-oxoG is repaired via the base excision repair (BER) pathway. To date, there are no reports on the removal of 8-oxoG or other oxidative DNA base lesions in breast cancer cells. Therefore, it remains to be established whether BER of oxidative lesions is altered during breast carcinogenesis. We therefore, hypothesized that the transformation from normal to malignant breast tissue may result from defects in oxidative DNA damage repair, consequently leading to mutations in important genes. Such a defect may occur in the nuclear and/or the mitochondrial genome. Mitochondrial DNA (mtDNA) encodes 13 proteins that are involved in oxidative phosphorylation. Oxidatively induced mutations in the mtDNA can lead to dysfunctional mitochondria, and have been implicated in degenerative diseases, cancer and aging. Therefore, effective oxidative damage repair processes are essential in order for the cell to maintain the integrity of the mitochondrial genome. We examined the ability of nuclear and mitochondrial extracts from a non-neoplastic mammary epithelial cell line and breast cancer MCF-7 and MDA-MB-468 cell lines to incise 8-oxoG and Tg lesions from duplex oligonucleotides. We have reported three important findings in this study: first, mitochondrial extracts from both MCF-7 and MDA-MB-468 breast cancer cell lines are deficient in the removal of 8-oxoG. Both breast cancer cell lines exhibited more than two-fold decrease in their ability to incise 8-oxoG relative to the wild type. This defect was specific for 8-oxoG since the incision of Tg by the same mitochondrial extracts was comparable to that of wild type cells. Second, nuclear extracts from both breast cancer cell lines removed 8-oxoG more rapidly and efficiently than mitochondrial extracts. Third, nuclear extracts were shown to remove Tg more rapidly than 8-oxoG. We have shown for the first time that mitochondria from human breast cancer cell lines are defective in the repair of 8-oxoG. This defective repair of 8-oxoG may imply that breast cancer cells have a high incidence of mtDNA mutations. The genetic status of mtDNA from these breast cancer cells remains to be determined through sequence analyses. Therefore, we conclude that repair of 8-oxoG in the mitochondrial genome may be crucial in the development of breast cancer. Our studies may provide a basis for novel molecular interventions of breast cancer. We further propose that other forms of cancer may be defective in oxidative DNA damage repair. We have also hypothesized that mitochondrial DNA of these cells may have excessive oxidative damage caused by defective oxidative repair. To address this hypothesis, mitochondrial and genomic DNA from these and other breast cancer cell lines will be analyzed by LC/GC mass spectrophotometry to determine the basal level oxidative damage. We will also assess induction of oxidative DNA damage by treating cells with specific oxidative damaging agents ( e.g. Menadione, gamma irradiation, or hydrogen peroxide), for analysis of rates of lesion formation via LC/GC mass spectrophotometry. In our most recent work, we have begun to evaluate the role of the BRCA 1 gene in oxidative damage repair. We are using two cell lines (CRL2336 and CRL2337) that are either homozygous or heterozygous for BRCA-1 mutation. The wt control for this project is the AG10009 lymphoblast cell line. Preliminary data suggests that nuclear repair of oxidative lesions, 8-oxoG, thymine glycol and 5-hydroxycytosine is reduced in cells homozygous for the BRCA-1 mutation relative to wild-type cells. Mitochondrial repair of oxidative lesions in this mutant cell line is comparable to that of wild-type cells. Once we have confirmed the repair phenotype of the BRCA1 mutant cell lines, further investigation will be directed to examining whether the specific repair enzymes involved in oxidative lesion repair (e.g. human endonuclease III (hNTH1) for thymine glycol) complexes with BRCA1 and other members of the BASC complex (Brca1-associated genome surveillance complex) as defined Wang et. al.( BRCA1, ATM, NBS1, BLM, MRE-11, RAD50, MSH2, MLH1, MSH6 ). It is possible that the BRCA1 gene may play an important role in oxidative DNA repair in mammary tissue possibly partially explaining one its roles breast tumorigenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Intramural Research (Z01)
Project #
1Z01AG000730-08
Application #
6815311
Study Section
(LCMB)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2003
Total Cost
Indirect Cost
Name
Aging
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Nyaga, Simon G; Lohani, Althaf; Evans, Michele K (2008) Deficient repair of 8-hydroxyguanine in the BxPC-3 pancreatic cancer cell line. Biochem Biophys Res Commun 376:336-40
Rodriguez, Henry; Jaruga, Pawel; Leber, Dennis et al. (2007) Lymphoblasts of women with BRCA1 mutations are deficient in cellular repair of 8,5'-Cyclopurine-2'-deoxynucleosides and 8-hydroxy-2'-deoxyguanosine. Biochemistry 46:2488-96
Evans, M K; Yu, C-R; Lohani, A et al. (2007) Expression of SOCS1 and SOCS3 genes is differentially regulated in breast cancer cells in response to proinflammatory cytokine and growth factor signals. Oncogene 26:1941-8
Nyaga, Simon G; Jaruga, Pawel; Lohani, Althaf et al. (2007) Accumulation of oxidatively induced DNA damage in human breast cancer cell lines following treatment with hydrogen peroxide. Cell Cycle 6:1472-8
Nyaga, Simon G; Lohani, Althaf; Jaruga, Pawel et al. (2006) Reduced repair of 8-hydroxyguanine in the human breast cancer cell line, HCC1937. BMC Cancer 6:297
Mambo, Elizabeth; Nyaga, Simon G; Bohr, Vilhelm A et al. (2002) Defective repair of 8-hydroxyguanine in mitochondria of MCF-7 and MDA-MB-468 human breast cancer cell lines. Cancer Res 62:1349-55