Our group is involved in the long-term goal of developing a high density genetic map of the mouse. We have been using inter(sub)species crosses to generate a map consisting almost exclusively of expressed genes and pseudogenes. These genes are mapped by the analysis of the progeny of two sets of genetic crosses - an interspecies backcross and an intersubspecies backcross. DNAs from these mice have been typed for over 900 loci, about half of which have also been genetically mapped in other systems. This permits us to map newly defined genes to specific positions on the linkage map and to integrate our data into composite maps of each chromosome. These studies have resulted in the genetic mapping of several hundred new genes this year including genes encoding sodium and calcium channels, zinc finger proteins, lymphotoxin receptor, mouse BRCA1, tetranectin, macrophage inflammatory protein, IL-2 receptor subunits, and synaptotagmins. Specific map locations can be useful information since proximity to a known developmental mutation can identify such a gene as a potential candidate for the abnormal phenotype. Other studies have focused on the organization of multigene families in the mammalian genome and on the comparative linkage relationships of homologous genes in man and mouse.

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000301-15
Application #
2566738
Study Section
Special Emphasis Panel (LMM)
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
1996
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Manthey, D; Banach, K; Desplantez, T et al. (2001) Intracellular domains of mouse connexin26 and -30 affect diffusional and electrical properties of gap junction channels. J Membr Biol 181:137-48
Van de Putte, T; Zwijsen, A; Lonnoy, O et al. (2001) Mice with a homozygous gene trap vector insertion in mgcRacGAP die during pre-implantation development. Mech Dev 102:33-44
Wang, L; Yan, L; McGuire, C et al. (2001) Mouse histamine N-methyltransferase: cDNA cloning, expression, gene cloning and chromosomal localization. Inflamm Res 50:300-8
Teubner, B; Odermatt, B; Guldenagel, M et al. (2001) Functional expression of the new gap junction gene connexin47 transcribed in mouse brain and spinal cord neurons. J Neurosci 21:1117-26
Sohl, G; Eiberger, J; Jung, Y T et al. (2001) The mouse gap junction gene connexin29 is highly expressed in sciatic nerve and regulated during brain development. Biol Chem 382:973-8
Teubner, B; Degen, J; Sohl, G et al. (2000) Functional expression of the murine connexin 36 gene coding for a neuron-specific gap junctional protein. J Membr Biol 176:249-62
Caterina, J J; Shi, J; Kozak, C A et al. (2000) Characterization, expression analysis and chromosomal mapping of mouse matrix metalloproteinase-19 (MMP-19). Mol Biol Rep 27:73-9
Chen, C; Kim, M G; Soo Lyu, M et al. (2000) Characterization of the mouse gene, human promoter and human cDNA of TSCOT reveals strong interspecies homology. Biochim Biophys Acta 1493:159-69
Korthauer, U; Nagel, W; Davis, E M et al. (2000) Anergic T lymphocytes selectively express an integrin regulatory protein of the cytohesin family. J Immunol 164:308-18
Cinquanta, M; Rovescalli, A C; Kozak, C A et al. (2000) Mouse Sebox homeobox gene expression in skin, brain, oocytes, and two-cell embryos. Proc Natl Acad Sci U S A 97:8904-9

Showing the most recent 10 out of 29 publications