Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000498-02
Application #
3822116
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1987
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
McGivern, David R; Collins, Peter L; Fearns, Rachel (2005) Identification of internal sequences in the 3' leader region of human respiratory syncytial virus that enhance transcription and confer replication processivity. J Virol 79:2449-60
Zhang, Liqun; Bukreyev, Alexander; Thompson, Catherine I et al. (2005) Infection of ciliated cells by human parainfluenza virus type 3 in an in vitro model of human airway epithelium. J Virol 79:1113-24
Schomacker, Henrick; Collins, Peter L; Schmidt, Alexander C (2004) In silico identification of a putative new paramyxovirus related to the Henipavirus genus. Virology 330:178-85
Tran, Kim C; Collins, Peter L; Teng, Michael N (2004) Effects of altering the transcription termination signals of respiratory syncytial virus on viral gene expression and growth in vitro and in vivo. J Virol 78:692-9
Kotelkin, Alexander; Prikhod'ko, Elena A; Cohen, Jeffrey I et al. (2003) Respiratory syncytial virus infection sensitizes cells to apoptosis mediated by tumor necrosis factor-related apoptosis-inducing ligand. J Virol 77:9156-72
Spann, Kirsten M; Collins, Peter L; Teng, Michael N (2003) Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J Virol 77:11201-11
Zhang, Liqun; Peeples, Mark E; Boucher, Richard C et al. (2002) Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 76:5654-66
Teng, Michael N; Collins, Peter L (2002) The central conserved cystine noose of the attachment G protein of human respiratory syncytial virus is not required for efficient viral infection in vitro or in vivo. J Virol 76:6164-71
Techaarpornkul, Sunee; Collins, Peter L; Peeples, Mark E (2002) Respiratory syncytial virus with the fusion protein as its only viral glycoprotein is less dependent on cellular glycosaminoglycans for attachment than complete virus. Virology 294:296-304
Gower, T L; Peeples, M E; Collins, P L et al. (2001) RhoA is activated during respiratory syncytial virus infection. Virology 283:188-96

Showing the most recent 10 out of 19 publications