Chlamydia trachomatis is the etiological agent of several significant diseases of humans including trachoma, the leading cause of infectious blindness worldwide. It is also the most common cause of sexually transmitted disease in the USA. Other species of medical importance include C. pneumoniae, a relatively recently recognized agent of upper respiratory tract infections and of current interest due to a possible association with atherosclerosis, and C. psittaci, which is primarily a pathogen of animals but occasionally is transmitted to humans. Chlamydiae are obligate intracellular bacteria that undergo their life cycles entirely within an intracellular vesicle that is isolated from established routes of intracellular vesicle trafficking. Whereas the majority of intracellular parasites are thought to block maturation of the endocytic vesicle to a lysosome, chlamydiae dissociate themselves from this pathway and establish a functional interaction with an exocytic pathway which delivers sphingolipids from the Golgi apparatus to the plasma membrane. Interaction with this secretory pathway provides a novel pathogenic mechanism allowing chlamydiae to establish themselves in a site not destined to fuse with lysosomes. One of the initial events in chlamydial infection is the expression of a chlamydial gene product(s) that effectively isolates the inclusion from the endosomal/lysosomal pathway and initiates fusion competence with a subset of exocytic vesicles. Surprisingly, although chlamydiae intercept sphingolipids in transit to the plasma membrane, the processing and export of cellular glycoproteins is not inhibited. Thus chlamydiae interrupt a specific cellular pathway with minimal interference of normal cellular function. Collectively, the data suggest that the chlamydial inclusion occupies a site distal to the trans-Golgi apparatus with properties of an exocytic vesicle in which fusion with the plasma membrane is inhibited or delayed. These results show potential not only for defining the interactions of chlamydiae with the host cell but will serve as a model system for other obligate intracellular pathogens which occupy vacuoles that do not fuse with lysosomes. Understanding the initial events in chlamydial differentiation including the transition in properties of the endocytic vesicle to one which intersects an exocytic pathway remain significant challenges in understanding the pathogenic mechanisms of chlamydiae. - Chlamydia trachomatis,trachoma,sexually transmitted disease,cell biology,intracellular parasitism,developmental bio,vesicle trafficking
Showing the most recent 10 out of 24 publications