Hepatitis C virus (HCV) is a major cause of community-acquired viral hepatitis. Prototype strains of the various genotypes of HCV, including some of those discovered in this laboratory, are being biologically amplified in chimpanzees, packaged and distributed for use as challenge inocula in studies of passive and active immunoprophylaxis, etc. Full-length cDNA clones of HCV (genotypes 1a, 1b and 2a) have been constructed and transcribed RNA used to transmit hepatitis C to chimpanzees by in vivo hepatic transfection. Chimpanzees, transfected with infectious cDNA clones of HCV, are being followed to determine the natural history of infection. Infectivity pools have been prepared from chimpanzees infected with monoclonal HCV (derived by in vivo transfection with RNA transcripts of infectious cDNA); these have been titered for infectivity in other chimpanzees. In addition, the availability of infectious cDNA clones of HCV has permitted for the first time a mutational analysis of genomic regions. For example, individual portions of the 3' NCR have been deleted from the full-length clone and the resultant deletion mutant clones inoculated into chimpanzees by intrahapatic transfection. Certain regions of the NCR have been identified as critical for in vivo replication of HCV. We have constructed an infectious cDNA clone of GB virus-B (GBV-B), a monkey virus that is the closest relative to HCV. In addition, we have prepared challenge pools of GBV-B and have determined the infectivity titer of these in tamarins. We plan to use the GBV-B tamarin system to study characteristics of the virus that it shares with HCV, which must be studied in chimpanzees. In other studies, we have constructed chimeric genomes from infectious cDNA clones of HCV and bovine viral diarrhea virus. These genomes can replicate in transfected cells but the resultant viral products cannot assemble into infectious virus in the absence of helper virus.We have determined the genetic heterogeneity of HCV isolates that were recovered from patients who were infected following transfusion. The sequence of the hypervariable region and adjacent portions of envelope proteins 1 and 2 were determined for multiple clones obtained from patients who had fulminant hepatitis, from patients who convalesced following acute hepatitis and from patients who progressed to chronic hepatitis C. Distinctive patterns of dynamic change in sequence of clones during the first several weeks of infection were observed. Patients with fulminant or resolving hepatitis had few changes in the sequences of clones, whereas there were many changes in the sequences of clones from patients who progressed to chronic hepatitis. Thus, the outcome of an HCV infection could be predicted in the first few weeks of the infection

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000570-11
Application #
6431596
Study Section
(LID)
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2000
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Kyuregyan, Karen K; Poleschuk, Valentina F; Zamyatina, Natalya A et al. (2005) Acute GB virus B infection of marmosets is accompanied by mutations in the NS5A protein. Virus Res 114:154-7
Meunier, Jean-Christophe; Engle, Ronald E; Faulk, Kristina et al. (2005) Evidence for cross-genotype neutralization of hepatitis C virus pseudo-particles and enhancement of infectivity by apolipoprotein C1. Proc Natl Acad Sci U S A 102:4560-5
Bukh, Jens (2004) A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39:1469-75
Nam, Jae-Hwan; Faulk, Kristina; Engle, Ronald E et al. (2004) In vivo analysis of the 3' untranslated region of GB virus B after in vitro mutagenesis of an infectious cDNA clone: persistent infection in a transfected tamarin. J Virol 78:9389-99
Bukh, Jens; Christensen, Erik; Krogsgaard, Kim (2003) [Treatment and prevention of hepatitis C--progress and challenges. The Danish Society of Hepatology] Ugeskr Laeger 165:1233
Sakai, Akito; Claire, Marisa St; Faulk, Kristina et al. (2003) The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A 100:11646-51
Bartosch, Birke; Bukh, Jens; Meunier, Jean-Christophe et al. (2003) In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc Natl Acad Sci U S A 100:14199-204
Corbet, Sylvie; Bukh, Jens; Heinsen, Anja et al. (2003) Hepatitis C virus subtyping by a core-envelope 1-based reverse transcriptase PCR assay with sequencing and its use in determining subtype distribution among Danish patients. J Clin Microbiol 41:1091-100
Bukh, Jens; Pietschmann, Thomas; Lohmann, Volker et al. (2002) Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc Natl Acad Sci U S A 99:14416-21
Ma, Xiaoying; Forns, Xavier; Gutierrez, Robin et al. (2002) DNA-based vaccination against hepatitis C virus (HCV): effect of expressing different forms of HCV E2 protein and use of CpG-optimized vectors in mice. Vaccine 20:3263-71

Showing the most recent 10 out of 21 publications