Papillomaviruses induce persistent epithelial lesions, known as papillomas. Genital papillomavirus infection is widespread and associated with the development of cervical cancer. The viral E2 proteins regulate viral transcription, replication and episomal genome maintenance.
Our aim i s to elucidate the mechanisms by which the E2 proteins control the viral life cycle. We have shown that papillomavirus genomes and the E2 transactivator protein interact with cellular mitotic chromosomes in dividing cells. This ensures that viral genomes are properly segregated to daughter cells and are retained within the nucleus. ? ?We have shown that there are variations in the association of different papillomavirus E2 proteins with mitotic chromosomes. We show that mitotic tethering is a common strategy among papillomaviruses but different viruses have evolved different chromosomal targets. ? ?We have shown that Brd4 is required for E2-mediated transcriptional activation but not genome partitioning of all papillomaviruses? ?HPV16 DNA is often integrated in cancers, disrupting the E1 or E2 genes. We demonstrate that the E2 protein is primarily a transcriptional repressor when expressed from the virus. Furthermore, E2-mediated repression requires both the transactivation function of E2 and specific binding of the E2 protein to sites in the LCR. We find no evidence that the E1 protein directly modulates HPV16 gene expression. ? ?We have shown that the HPV8 E2 protein binds to distinct regions of mitotic chromosomes and does not require the Brd4 prrotein, as has been shown for BPV-1 E2.?

Agency
National Institute of Health (NIH)
Institute
National Institute of Allergy and Infectious Diseases (NIAID)
Type
Intramural Research (Z01)
Project #
1Z01AI000713-13
Application #
7302221
Study Section
(LVD)
Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2006
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Jang, Moon Kyoo; Kwon, Deukwoo; McBride, Alison A (2009) Papillomavirus E2 proteins and the host BRD4 protein associate with transcriptionally active cellular chromatin. J Virol 83:2592-600
Cardenas-Mora, Juan; Spindler, Jonathan E; Jang, Moon Kyoo et al. (2008) Dimerization of the papillomavirus E2 protein is required for efficient mitotic chromosome association and Brd4 binding. J Virol 82:7298-305
McPhillips, M G; Oliveira, J G; Spindler, J E et al. (2006) Brd4 is required for e2-mediated transcriptional activation but not genome partitioning of all papillomaviruses. J Virol 80:9530-43
Soeda, Emiko; Ferran, Maureen C; Baker, Carl C et al. (2006) Repression of HPV16 early region transcription by the E2 protein. Virology 351:29-41
Garcia-Alai, Maria M; Gallo, Mariana; Salame, Marcelo et al. (2006) Molecular basis for phosphorylation-dependent, PEST-mediated protein turnover. Structure 14:309-19
Oliveira, Jaquelline G; Colf, Leremy A; McBride, Alison A (2006) Variations in the association of papillomavirus E2 proteins with mitotic chromosomes. Proc Natl Acad Sci U S A 103:1047-52
McBride, Alison A; Oliveira, Jaquelline G; McPhillips, Maria G (2006) Partitioning viral genomes in mitosis: same idea, different targets. Cell Cycle 5:1499-502
Zheng, Peng-Sheng; Brokaw, Jane; McBride, Alison A (2005) Conditional mutations in the mitotic chromosome binding function of the bovine papillomavirus type 1 E2 protein. J Virol 79:1500-9
Baxter, Michael K; McBride, Alison A (2005) An acidic amphipathic helix in the Bovine Papillomavirus E2 protein is critical for DNA replication and interaction with the E1 protein. Virology 332:78-88
Brannon, Angela R; Maresca, Julia A; Boeke, Jef D et al. (2005) Reconstitution of papillomavirus E2-mediated plasmid maintenance in Saccharomyces cerevisiae by the Brd4 bromodomain protein. Proc Natl Acad Sci U S A 102:2998-3003

Showing the most recent 10 out of 14 publications