Biologically active materials exposed to high energy electrons are damaged. If the irradiation is carried out at very low temperatures, the rates of loss of activity or structure with radiation dose are directly proportional to the mass of the molecules which are required in the assay. the presence of other molecules has no effect on the measurement of mass; purified samples are not required. Target theory of the inactivation of biological activity by ionizing radiation was extended to several complex biochemical systems. Target size analysis has been applied to several major problems including the molecular forms of extracellular phospholipases A2 and various Golgi enzymes.

Project Start
Project End
Budget Start
Budget End
Support Year
36
Fiscal Year
1995
Total Cost
Indirect Cost
Name
National Institute of Arthritis and Musculoskeletal and Skin Diseases
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Pummill, Philip E; Kane, Tasha A; Kempner, Ellis S et al. (2007) The functional molecular mass of the Pasteurella hyaluronan synthase is a monomer. Biochim Biophys Acta 1770:286-90
Miller, J H; Draper, L R; Kempner, E S (2003) Direct radiation damage is confined to a single polypeptide in rabbit immunoglobulin G. Biophys J 84:2781-5
Sluis-Cremer, Nicolas; Kempner, Ellis; Parniak, Michael A (2003) Structure-activity relationships in HIV-1 reverse transcriptase revealed by radiation target analysis. Protein Sci 12:2081-6
Pummill, P E; Kempner, E S; DeAngelis, P L (2001) Functional molecular mass of a vertebrate hyaluronan synthase as determined by radiation inactivation analysis. J Biol Chem 276:39832-5
Bolger, G; Liuzzi, M; Krogsrud, R et al. (2000) Radiation inactivation of ribonucleotide reductase, an enzyme with a stable free radical. Biophys J 79:2155-61
Kempner, E S (2000) Macromolecular cross section and cellular localization: determination by radiation target methods. Anal Biochem 287:191-5