GlvA, a 6-phospho-alpha-glucosidase from Bacillus subtilis, is assigned to glycoside hydrolase family 4. We have previously hypothesized that this unusual enzyme catalyzes the hydrolysis of maltose 6-phosphate via a redox-elimination-addition mechanism requiring NAD+ as cofactor. In the past year our studies have provided physico-chemical, and kinetic evidence to support the postulated hypothesis. In contrast to previous reports and consistent with the proposed mechanism, GlvA is only activated in the presence of the nicotinamide cofactor in its oxidized, and not the reduced NADH, form. Significantly, GlvA catalyzes the hydrolysis of both 6-phospho-alpha- and 6-phospho-beta-glucosides containing activated leaving groups such as p-nitrophenol and does so with retention and inversion, respectively, of anomeric configuration. Mechanistic details of the individual bond cleaving and forming steps were probed using a series of 6-phospho-alpha- and 6-phospho-beta-glucosides. Primary deuterium kinetic isotope effects (KIEs) were measured for both classes of substrates in which either the C2 or the C3 protons have been substituted with a deuterium atom, consistent with C-H bond cleavage at each center being partially rate -limiting. Kinetic parameters were also determined for 1-2H-substituted substrates, and depending on the substrates and the reaction conditions, the measurements of kcat and kcat/KM produced either no KIEs or inverse KIEs. In conjunction with results of Bronsted analyses with both aryl 6-phospho-alpha- and beta-glucosides, the kinetic data suggest that GlvA utilizes an E1cb mechanism analogous to that proposed for the Thermotoga maritima BglT, a 6-phospho-beta-glucosidase that is also included in family 4 of the glycosyl hydrolase superfamily (Yip, V.L.Y et al. (2006) Biochemistry 45, 571-580). The pattern of isotope effects measured, and the observation of very similar kcat values for all substrates including unactivated and natural substrates, indicate that the oxidation and deprotonation steps are rate-limiting steps in essentially all cases. This catalytic mechanism permits the cleavage of both alpha- and beta-glycosides within the same active site motif and, for activated substrates that do not require acid catalysis for cleavage, within the same active site. Remarkably, the sugar-6-phosphate product (glucose-6P), has the same anomeric (alpha) form in the two cases. A summary of our findings has recently appeared in the peer-reviewed journal, Biochemistry.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Intramural Research (Z01)
Project #
1Z01DE000341-26
Application #
7593354
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
26
Fiscal Year
2007
Total Cost
$452,857
Indirect Cost
Name
National Institute of Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Zhang, Qiangmin; Gao, Feng; Peng, Hao et al. (2009) Crystal structures of Streptococcus suis mannonate dehydratase (ManD) and its complex with substrate: genetic and biochemical evidence for a catalytic mechanism. J Bacteriol 191:5832-7
Zhang, Qiangmin; Peng, Hao; Gao, Feng et al. (2009) Structural insight into the catalytic mechanism of gluconate 5-dehydrogenase from Streptococcus suis: Crystal structures of the substrate-free and quaternary complex enzymes. Protein Sci 18:294-303
Hall, Barry G; Pikis, Andreas; Thompson, John (2009) Evolution and biochemistry of family 4 glycosidases: implications for assigning enzyme function in sequence annotations. Mol Biol Evol 26:2487-97
Pikis, Andreas; Hess, Sonja; Arnold, Ingrid et al. (2006) Genetic requirements for growth of Escherichia coli K12 on methyl-alpha-D-glucopyranoside and the five alpha-D-glucosyl-D-fructose isomers of sucrose. J Biol Chem 281:17900-8
Thompson, John; Hess, Sonja; Pikis, Andreas (2004) Genes malh and pagl of Clostridium acetobutylicum ATCC 824 encode NAD+- and Mn2+-dependent phospho-alpha-glucosidase(s). J Biol Chem 279:1553-61
Rajan, Shyamala S; Yang, Xiaojing; Collart, Frank et al. (2004) Novel catalytic mechanism of glycoside hydrolysis based on the structure of an NAD+/Mn2+ -dependent phospho-alpha-glucosidase from Bacillus subtilis. Structure 12:1619-29
Yip, Vivian L Y; Varrot, Annabelle; Davies, Gideon J et al. (2004) An unusual mechanism of glycoside hydrolysis involving redox and elimination steps by a family 4 beta-glycosidase from Thermotoga maritima. J Am Chem Soc 126:8354-5
Xu, De-Qi; Thompson, John; Cisar, John O (2003) Genetic loci for coaggregation receptor polysaccharide biosynthesis in Streptococcus gordonii 38. J Bacteriol 185:5419-30
Cisar, J O; Xu, D Q; Thompson, J et al. (2000) An alternative interpretation of nanobacteria-induced biomineralization. Proc Natl Acad Sci U S A 97:11511-5