Cartilage is a unique tissue that consists of extensive extracellular matrix whose function is to absorb shock in the joint. Genetic defects of cartilage proteins are responsible for certain types of osteoarthritis. Abnormal expression and degradation of cartilage components also lead to impaired function of joints. The purpose of this project is to understand the molecular mechanisms underlying cartilage formation in normal development and to identify factors involved in the differentiation of chondrocytes. Several major cartilage components have been cloned and their primary structures have been determined. The structure and function of these proteins have been studied using both synthetic peptides and recombinant proteins produced in bacteria and mammalian cells. Sequences regulating transcription of the collagen II gene have been identified in the promoter and the enhancer region. These sequences have been shown to interact with multiple nuclear factors. Several protein factors which bind to the enhancer have been cloned and characterized. The function of these factors is being tested by DNA transfection. Glucocorticoid responsive sequences have been identified in the promoter and the first intron of the link protein gene. Without these sequences, the promoter activity of the link protein gene is significantly reduced in chondrocytes. Retinoic acid decreases the expression of the link protein gene. The region with which retinoic acid interacts to produce this effect has been localized within the first intron of the link protein gene.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Intramural Research (Z01)
Project #
1Z01DE000483-04
Application #
3839228
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
1992
Total Cost
Indirect Cost
Name
National Institute of Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Ishikawa, Masaki; Williams, Geneva L; Ikeuchi, Tomoko et al. (2016) Pannexin 3 and connexin 43 modulate skeletal development through their distinct functions and expression patterns. J Cell Sci 129:1018-30
Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi et al. (2014) Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation. J Cell Sci 127:5261-72
Talamillo, Ana; Delgado, Irene; Nakamura, Takashi et al. (2010) Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol 337:363-74
Matsunobu, Tomoya; Torigoe, Kiyoyuki; Ishikawa, Masaki et al. (2009) Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol 332:325-38
Tsang, Kwok Yeung; Chan, Danny; Cheslett, Deborah et al. (2007) Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol 5:e44
de Vega, Susana; Iwamoto, Tsutomu; Nakamura, Takashi et al. (2007) TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 282:30878-88
Iwamoto, Masahiro; Tamamura, Yoshihiro; Koyama, Eiki et al. (2007) Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol 305:40-51
Matsumoto, Kazu; Kamiya, Nobuhiro; Suwan, Keittisak et al. (2006) Identification and characterization of versican/PG-M aggregates in cartilage. J Biol Chem 281:18257-63
Hozumi, Kentaro; Suzuki, Nobuharu; Nielsen, Peter K et al. (2006) Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J Biol Chem 281:32929-40
Tamamura, Yoshihiro; Otani, Tomohiro; Kanatani, Naoko et al. (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280:19185-95

Showing the most recent 10 out of 16 publications