Cartilage is a highly specialized connective tissue with distinct morphological and biochemical characteristics. Histologically, it contains spherical chondrocytes surrounded by extensive extracellular matrix. Chondrocytes produce large amounts of cartilage-specific matrix molecules, including type II collagen, aggrecan, link protein, and hyaluronic acid. Hormones and vitamins affect cartilage expression and maturation by regulating the transcription of cartilage genes. During early development, chondrocytes and myoblasts differentiate from a common population of mesodermal cells that has the potential to form either cartilage or muscle. During differentiation, the activation of muscle-specific genes requires the expression of myogenic factors such as Myf-5 and MyoD1. Since chondrocytes originate from the same mesenchyme that produces myoblasts, one could hypothesize that the differentiation factors of both cell types are similar, and that the mechanisms that activate cartilage-specific genes could be related to those for muscle- specific genes. Our objective is to define the mechanisms for activating chondrocyte-specific genes and to elucidate the molecular basis of cartilage development. Using an animal model, we are also identifying the function of cartilage proteins in vivo. We have initiated a new genome project to identify novel genes important for tooth and craniofacial development. Our goal is to discover and characterize previously unknown genes to help understand how tooth and craniofacial tissues develop and to define the molecular defects underlying anomalies of these tissues or oral cancer. Craniofacial anomalies and cancer of the mouth, neck, and head are of major public concern. A large number of genes are believed to be involved in such anomalies and cancers. As an initial step, we have started to identify and catalogue the genes involved in specific stages of tooth and craniofacial development. The identification of genes that have highly location- and stage-specific expression is important since the gene products are likely to have key roles in the formation of craniofacial tissues. It is also expected that mutations in these genes cause anomalies and cancer. This information will also be useful for generating diagnostic reagents, developing methods for disease and birth defect prevention, and for potential gene therapies.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Intramural Research (Z01)
Project #
1Z01DE000483-08
Application #
2572336
Study Section
Special Emphasis Panel (LDB)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
1996
Total Cost
Indirect Cost
Name
National Institute of Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Ishikawa, Masaki; Williams, Geneva L; Ikeuchi, Tomoko et al. (2016) Pannexin 3 and connexin 43 modulate skeletal development through their distinct functions and expression patterns. J Cell Sci 129:1018-30
Nakamura, Takashi; Yoshitomi, Yasuo; Sakai, Kiyoshi et al. (2014) Epiprofin orchestrates epidermal keratinocyte proliferation and differentiation. J Cell Sci 127:5261-72
Talamillo, Ana; Delgado, Irene; Nakamura, Takashi et al. (2010) Role of Epiprofin, a zinc-finger transcription factor, in limb development. Dev Biol 337:363-74
Matsunobu, Tomoya; Torigoe, Kiyoyuki; Ishikawa, Masaki et al. (2009) Critical roles of the TGF-beta type I receptor ALK5 in perichondrial formation and function, cartilage integrity, and osteoblast differentiation during growth plate development. Dev Biol 332:325-38
Tsang, Kwok Yeung; Chan, Danny; Cheslett, Deborah et al. (2007) Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function. PLoS Biol 5:e44
de Vega, Susana; Iwamoto, Tsutomu; Nakamura, Takashi et al. (2007) TM14 is a new member of the fibulin family (fibulin-7) that interacts with extracellular matrix molecules and is active for cell binding. J Biol Chem 282:30878-88
Iwamoto, Masahiro; Tamamura, Yoshihiro; Koyama, Eiki et al. (2007) Transcription factor ERG and joint and articular cartilage formation during mouse limb and spine skeletogenesis. Dev Biol 305:40-51
Matsumoto, Kazu; Kamiya, Nobuhiro; Suwan, Keittisak et al. (2006) Identification and characterization of versican/PG-M aggregates in cartilage. J Biol Chem 281:18257-63
Hozumi, Kentaro; Suzuki, Nobuharu; Nielsen, Peter K et al. (2006) Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J Biol Chem 281:32929-40
Tamamura, Yoshihiro; Otani, Tomohiro; Kanatani, Naoko et al. (2005) Developmental regulation of Wnt/beta-catenin signals is required for growth plate assembly, cartilage integrity, and endochondral ossification. J Biol Chem 280:19185-95

Showing the most recent 10 out of 16 publications