Basement membranes are the principal extracellular matrices for most tissues, providing physical support, molecular filtering, and cell regulatory functions. Basement membranes consist of a unique set of proteins, and their composition and function are different in various tissues. Recombinant DNA techniques have been used to determine the structure and functions of basement membranes proteins. New components of basement membranes have been identified and studies of their tissue specificity and function have been in progress. Approaches of synthetic peptides and expression of recombinant proteins have been applied to understand the mechanisms of the molecular assembly of basement membrane molecules. DNA elements which regulate genes for basement membrane proteins have been localized in the promoter and enhancer regions and examined for their gene specificity. Nuclear factors which bind to some of these DNA elements have been cloned and sequenced. The protein factors have been expressed in bacteria and mammalian cells to study their cell type specificity and their function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Intramural Research (Z01)
Project #
1Z01DE000485-04
Application #
3839230
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
1992
Total Cost
Indirect Cost
Name
National Institute of Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Sarangi, Pranita P; Chakraborty, Papiya; Dash, Shiba Prasad et al. (2018) Cell adhesion protein fibulin-7 and its C-terminal fragment negatively regulate monocyte and macrophage migration and functions in vitro and in vivo. FASEB J 32:4889-4898
de Vega, S; Iwamoto, T; Yamada, Y (2009) Fibulins: multiple roles in matrix structures and tissue functions. Cell Mol Life Sci 66:1890-902
Ichikawa, Naoki; Iwabuchi, Kazuhisa; Kurihara, Hidetake et al. (2009) Binding of laminin-1 to monosialoganglioside GM1 in lipid rafts is crucial for neurite outgrowth. J Cell Sci 122:289-99
Kasai, Shingo; Urushibata, Shunsuke; Hozumi, Kentaro et al. (2007) Identification of multiple amyloidogenic sequences in laminin-1. Biochemistry 46:3966-74
Mochizuki, Mayumi; Philp, Deborah; Hozumi, Kentaro et al. (2007) Angiogenic activity of syndecan-binding laminin peptide AG73 (RKRLQVQLSIRT). Arch Biochem Biophys 459:249-55
Kato-Takagaki, Kozue; Suzuki, Nobuharu; Yokoyama, Fumiharu et al. (2007) Cyclic peptide analysis of the biologically active loop region in the laminin alpha3 chain LG4 module demonstrates the importance of peptide conformation on biological activity. Biochemistry 46:1952-60
Hozumi, Kentaro; Suzuki, Nobuharu; Nielsen, Peter K et al. (2006) Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J Biol Chem 281:32929-40
Fukumoto, Satoshi; Miner, Jeffrey H; Ida, Hiroko et al. (2006) Laminin alpha5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 281:5008-16
Aumailley, Monique; Bruckner-Tuderman, Leena; Carter, William G et al. (2005) A simplified laminin nomenclature. Matrix Biol 24:326-32
Vikramadithyan, Reeba K; Kako, Yuko; Chen, Guangping et al. (2004) Atherosclerosis in perlecan heterozygous mice. J Lipid Res 45:1806-12

Showing the most recent 10 out of 12 publications