In the field of taste, our focus has been on the isolation and characterization of genes encoding taste receptors and using these to mark the cells, define the corresponding signaling pathways, dissect receptor specificity, generate topographic maps, and trace the respective neuronal connectivity circuits. This work has identified and characterized two families of G-protein coupled receptors, T1Rs and T2Rs, that are expressed in distinct subsets of taste receptor cells and that include functionally validated sweet, amino acid and bitter taste receptors. In addition, we have shown that the TRP-ion channel PKD2L1 is selectively expressed in sour sensing cells. We have also developed a number of genetically engineered mouse lines that have had a major impact in our understanding of how sweet, bitter and umami taste are encoded at the periphery. In this reporting period, we (in our collaboration with Charles Zuker and his group at UCSD) have continued to focus effort on understanding the details of taste coding at the periphery with work concentrating on using molecular genetic techniques to uncover details of sour, salt and unconventional tastants. In addition, we have been studying mouse models, including mice in which specific subsets of taste cell have been selectively ablated to understand reports from other groups that have suggested novel signal transmission between distinct cell types within the taste bud.? ? In the field of olfaction, our focus has been on the development of methods whereby we can control the expression of odorant receptors. In mice, the odorant receptors are encoded by a family of more than a 1000 genes. A fundamental feature of the mammalian olfactory system is that each olfactory sensory neuron expresses just a single member of this vast family of genes. However, the details of the control of odorant receptor gene expression remain unexplained. In a collaborative project with Leonardo Belluscio, we have demonstrated new aspects of regulation that contribute to the control of odorant gene expression and have devised a system that can reliably generate mice expressing a single odorant receptor in the vast majority of olfactory sensory neurons. Previous studies from other groups have shown that odorant receptors play a key role in establishing a chemotopic map in the olfactory bulb by controlling the precise location where the primary sensory neuron makes synaptic connections with secondary neurons. Again the details of this process remain unknown. In our continuing studies, we are manipulating odorant receptor expression to investigate the role these receptors play in establishing the connectivity of olfactory sensory neuron in the olfactory bulb.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Intramural Research (Z01)
Project #
1Z01DE000561-16
Application #
7733912
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
16
Fiscal Year
2008
Total Cost
$1,278,857
Indirect Cost
Name
National Institute of Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Nguyen, Minh Q; Zhou, Zhishang; Marks, Carolyn A et al. (2007) Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131:1009-17
Huang, Angela L; Chen, Xiaoke; Hoon, Mark A et al. (2006) The cells and logic for mammalian sour taste detection. Nature 442:934-8
Chandrashekar, Jayaram; Hoon, Mark A; Ryba, Nicholas J P et al. (2006) The receptors and cells for mammalian taste. Nature 444:288-94
Mueller, Ken L; Hoon, Mark A; Erlenbach, Isolde et al. (2005) The receptors and coding logic for bitter taste. Nature 434:225-9
Zhang, Yifeng; Hoon, Mark A; Chandrashekar, Jayaram et al. (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293-301
Zhao, Grace Q; Zhang, Yifeng; Hoon, Mark A et al. (2003) The receptors for mammalian sweet and umami taste. Cell 115:255-66
Nelson, Greg; Chandrashekar, Jayaram; Hoon, Mark A et al. (2002) An amino-acid taste receptor. Nature 416:199-202
Martini, S; Silvotti, L; Shirazi, A et al. (2001) Co-expression of putative pheromone receptors in the sensory neurons of the vomeronasal organ. J Neurosci 21:843-8
Nelson, G; Hoon, M A; Chandrashekar, J et al. (2001) Mammalian sweet taste receptors. Cell 106:381-90
Chandrashekar, J; Mueller, K L; Hoon, M A et al. (2000) T2Rs function as bitter taste receptors. Cell 100:703-11

Showing the most recent 10 out of 13 publications