An unusual amino acid, hypusine, which occurs in only one cellular protein, eukaryotic translation initiation factor 5A (eIF-5A), is intimately involved in eukaryotic cell proliferation. Hypusine biosynthesis occurs by way of two sequential post-translational modification reactions: 1) deoxyhypusine synthesis and 2) deoxyhypusine hydroxylation. Deoxyhypusine synthase catalyzes the transfer of the butylamine moiety of the polyamine spermidine to a specific lysine residue in the eIF-5A precursor protein to form deoxyhypusine. We have purified this enzyme from rat testis, identified its gene in the yeast Saccharomyces cerevisiae and cloned the human cDNA. Inactivation of the deoxyhypusine synthase gene in yeast causes loss of cell viability, indicating that the hypusine modification is vital for in vivo eIF-5A activity and cell proliferation. We have characterized the physical and catalytic properties and the reaction mechanism of the enzyme. We have identified an active site residue (Lys329) of the human enzyme that is involved in enzyme-intermediate formation, and thereby is critical for catalysis. X-ray crystallography (in collaboration with Drs. D.-I. Liao and D. R. Davies) of human deoxyhypusine synthase in a complex with NAD has revealed its tetrameric structure and the NAD binding site. Molecular modeling of the spermidine binding site should aid development of specific inhibitors of deoxyhypusine synthase that may be useful as anti- proliferative agents.

Agency
National Institute of Health (NIH)
Institute
National Institute of Dental & Craniofacial Research (NIDCR)
Type
Intramural Research (Z01)
Project #
1Z01DE000608-04
Application #
6161836
Study Section
Special Emphasis Panel (OPCB)
Project Start
Project End
Budget Start
Budget End
Support Year
4
Fiscal Year
1997
Total Cost
Indirect Cost
Name
National Institute of Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Chattopadhyay, Manas K; Park, Myung Hee; Tabor, Herbert (2008) Hypusine modification for growth is the major function of spermidine in Saccharomyces cerevisiae polyamine auxotrophs grown in limiting spermidine. Proc Natl Acad Sci U S A 105:6554-9
Dias, Camila A O; Cano, Veridiana S P; Rangel, Suzana M et al. (2008) Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis. FEBS J 275:1874-88
Cano, Veridiana S P; Jeon, Geoung A; Johansson, Hans E et al. (2008) Mutational analyses of human eIF5A-1--identification of amino acid residues critical for eIF5A activity and hypusine modification. FEBS J 275:44-58
Wolff, E C; Kang, K R; Kim, Y S et al. (2007) Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification. Amino Acids 33:341-50
Huang, Yunfei; Higginson, Daniel S; Hester, Lynda et al. (2007) Neuronal growth and survival mediated by eIF5A, a polyamine-modified translation initiation factor. Proc Natl Acad Sci U S A 104:4194-9
Kang, Kee Ryeon; Kim, Yeon Sook; Wolff, Edith C et al. (2007) Specificity of the deoxyhypusine hydroxylase-eukaryotic translation initiation factor (eIF5A) interaction: identification of amino acid residues of the enzyme required for binding of its substrate, deoxyhypusine-containing eIF5A. J Biol Chem 282:8300-8
Park, Myung Hee (2006) The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A). J Biochem 139:161-9
Park, Jong-Hwan; Aravind, L; Wolff, Edith C et al. (2006) Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme. Proc Natl Acad Sci U S A 103:51-6
Kim, Yeon Sook; Kang, Kee Ryeon; Wolff, Edith C et al. (2006) Deoxyhypusine hydroxylase is a Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis [corrected]. J Biol Chem 281:13217-25
Nishimura, Kazuhiro; Murozumi, Kaori; Shirahata, Akira et al. (2005) Independent roles of eIF5A and polyamines in cell proliferation. Biochem J 385:779-85

Showing the most recent 10 out of 19 publications