The results of a Brownian dynamics simulation of hydrocarbon chain in a membrane bilayer were used to analyze NMR relaxation experiments to yield information concerning the dynamics and ordering of lioids in vesicles. It was shown that the frequency dependence of the data does not arise from trans-gauche isomerizations or from axial rotation of the entire molecule. Quantative agreement is found using a model in which fast axial rotations (approximately 100ps) and large amplitude (with order parameter approximately 0.6) but slow director fluctuations (approximately 10ns) are superimposed on the internal motions. This work supports a very fluid picture of the interior of the bilayer in contrast to the commonly accepted model in which crankshaft motions predominate. Using the stochastic theory of chemical reactions and the theory of first passage times, a simple analytic expression is derived for the distribution of delay times that has been observed in studies of the polymerization kinetics of sickle hemoglobin under conditions where the polymerization progress curves exhibit stochastic variation. The rate of homogeneous nucleation can be readily extracted from such experiments using this expression. This work constitutes a significant addition to the rather limited number of examples where contact can be successfully made between the stochastic theory of chemical kinetics and experiment. The influence of internal conformational dynamics in the electron transfer reaction between a donor and an acceptor was examined. The steady stare flux resulting from the coupling of two multistate systems was shown to be identical to that calculated from a simple kinetic scheme involving only four states, if the effective rate constants of this reduced scheme are approximately defined in terms of the mean first passage times for moving between various points along the multistate cycles.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
1988
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Berezhkovskii, Alexander; Hummer, Gerhard; Szabo, Attila (2009) Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J Chem Phys 130:205102
Gopich, Irina V; Nettels, Daniel; Schuler, Benjamin et al. (2009) Protein dynamics from single-molecule fluorescence intensity correlation functions. J Chem Phys 131:095102
Bezrukov, Sergey M; Berezhkovskii, Alexander M; Szabo, Attila (2007) Diffusion model of solute dynamics in a membrane channel: mapping onto the two-site model and optimizing the flux. J Chem Phys 127:115101
Dudko, Olga K; Mathe, Jerome; Szabo, Attila et al. (2007) Extracting kinetics from single-molecule force spectroscopy: nanopore unzipping of DNA hairpins. Biophys J 92:4188-95
Berezhkovskii, Alexander; Szabo, Attila (2006) Perturbation theory of Phi-value analysis of two-state protein folding: relation between p fold and Phi values. J Chem Phys 125:104902
Dudko, Olga K; Hummer, Gerhard; Szabo, Attila (2006) Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys Rev Lett 96:108101
Gopich, Irina; Szabo, Attila (2005) Fluorophore-quencher distance correlation functions from single-molecule photon arrival trajectories. J Phys Chem B 109:6845-8
Berezhkovskii, Alexander; Szabo, Attila (2005) One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions. J Chem Phys 122:14503
Gopich, Irina V; Szabo, Attila (2005) Photon counting histograms for diffusing fluorophores. J Phys Chem B 109:17683-8
Gopich, Irina; Szabo, Attila (2005) Theory of photon statistics in single-molecule Forster resonance energy transfer. J Chem Phys 122:14707

Showing the most recent 10 out of 20 publications