Ascorbic acid (vitamin C), a dietary requirement for human health, is an electron donor for several enzymatic actions, functions as an antioxidant, and is implicated in host defense mechanisms, endocrine function and the visual process (lens). Recent renewed interest in the biochemistry of ascorbic acid has been prompted by the realization that relatively little is known concerning the concentrations of the vitamin required for optimum functioning of these several roles. In the case of enzymatic reactions, optimal rate of a process is defined as that concentration that allows the reaction to reach Vmax without toxicity. As part of a program to determine these concentrations, in situ kinetic measurements have been carried out for certain vitamin C-linked reactions. In addition to examination of functional roles of vitamin C, recent characterization of efficient transport mechanisms that translocate vitamin C across cellular membranes has emphasized the importance of the vitamin to biological processes. In previous work, we synthesized radiolabelled 6-deoxy-6-iodoascorbic acid as a tool for studying additional details of the ascorbic acid transport system. Transport studies indicate this will be a useful tool in attempts to isolate the ascorbic acid transport protein. To investigate the importance of the 2-hydroxyl group on ascorbic acid activity, we also previously prepared 2-deoxy-ascorbic acid, and 2-deoxy-2-halo ascorbic acids, including 2-deoxy-2-fluoroascorbic acid, an isosteric and isopolar, non-oxidizable, analogue. In addition, the cyclic hemiketal form of 2,2-difluoro-2-deoxyascorbic acid also was prepared, a structure that corresponds to the cyclic hemiketal form of dehydroascrobic acid. As an additional tool, we prepared an ascorbic acid analogue that contains a photoactivatable trifluoromethyl diazirine moiety as a potential photoaffinity label. Transport properties of these analogues, as well as their effects on glutarodoxin, the enzyme that reduces deoxyascorbic acid to ascorbic acid,wereinvestigated. Initial results show that the analogue effectively blocks ascorbate transport, but itself is not transported. Photochemical experiments to date have been inconclusive. In a new approach to the study of ascorbic acid glucose transport, we are preparing neow flavonoid analogues to study sturtural parameters of these inhibitors of ascorbate and glucose transport. Inculded will be potential affinity labels for the transport protein(s). Effects of fluorine substitution biolgical begavior of the flavonoids also will be examined.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Intramural Research (Z01)
Project #
1Z01DK032002-11
Application #
6810247
Study Section
(LBC)
Project Start
Project End
Budget Start
Budget End
Support Year
11
Fiscal Year
2003
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
United States
Zip Code