Hepatitis C virus (HCV) is a leading cause of chronic hepatitis and hepatocellular carcinoma worldwide and infects more than 1% of the world?s population. Successful vaccine development is pivotal in controlling this global health problem. A system for efficient assembly of HCV structural proteins into HCV-like particles (VLPs) in insect cells has been developed in our laboratory. These noninfectious HCV-like particles have similar morphologic, serologic and biophysical properties as the putative virions isolated from HCV infected humans. In contrast to recombinant subunit vaccines, the viral proteins of HCV-like particles may be presented in a native, virion-like conformation and may therefore be superior in eliciting a protective humoral and cellular immune response. The humoral and cellular immunogenicity of the virus-like particles with or without viral p7 protein was studied. The HCV-LPs were inoculated intraperitoneally without any adjuvant into either BALB/c or AAD (C57BL/6 transgenic for HLA-A2.1) mice. Immunized mice developed high titers of anti-E2 antibodies and virus-specific cellular immune responses including cytotoxic T lymphocytes and T helper responses with gamma interferon production. To evaluate the potential of HCV-LPs as a protective immunogen in a surrogate model, we challenged HCV-LP-immunized mice one month after the last boost with a recombinant vaccinia virus expressing core, E1 and E2 (vvHCV-ST). Mice immunized with virus-like particles were protected from challenge with the recombinant vvHCV.S but not the control virus (vvlacZ). In comparison, DNA immunization with a construct expressing the HCV structural genes resulted in much less protection from HCV-vaccinia challenge. We also evaluated the effects of adjuvant AS01B (monophosphoryl lipid A and QS21) and CpG oligodeoxynucleotides (ODN) 10105 on the immunogenicity of HCV-LPs in mice, and showed that the adjuvants, especially the combination of both, enhanced the immune response with a more TH1 bias. We also tested the HCV-LP and the adjuvants in a nonhuman primate model (baboon) and demonstrated induction of robust and broad humoral and cellular immune responses that can be enhanced by the adjuvants. we further test the immunogenicity of HCV-LPs and the effects of novel adjuvant systems in non-human primates. Three groups of four baboons were immunized with HCV-LPs alone or HCV-LPs plus adjuvant, AS01B (monophosphoryl lipid A and QS21) or the combination of AS01B and CpG oligodeoxynucleotides10105. After four immunizations over a 6 month period, all animals developed HCV-specific humoral and cellular immune responses, in particular, antibodies to HCV structure proteins core and E1/E2, and virus-specific cellular immunity including CD4+ (by enzyme-linked immunospot assay for interferon-g) and CD8+ (by intracellular cytokine staining for interferon-g) responses. In addition, the immunogenicity of HCV-LPs was enhanced by the use of adjuvant AS01B and the combination of AS01B and CpG 10105. The overall HCV-specific immune responses were robust and long-lasting (>8 months). Our results indicate that hepatitis C virus-like particles can induce humoral and cellular immune responses and offers a promising approach to vaccine development. We are currently conduct experiments in chimpanzees to test the effectiveness of the HCV-LP as a vaccine candidate.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Intramural Research (Z01)
Project #
1Z01DK054503-08
Application #
6983979
Study Section
(DDB)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
2004
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Ghany, Marc G; Liang, T Jake (2014) Building bridges and providing transparency to the hepatitis C virus drug approval process. Gastroenterology 147:1201-3
Rotman, Yaron; Liang, T Jake (2009) Coinfection with hepatitis C virus and human immunodeficiency virus: virological, immunological, and clinical outcomes. J Virol 83:7366-74
Su, Xiaowen; Yee, Leland J; Im, KyungAh et al. (2008) Association of single nucleotide polymorphisms in interferon signaling pathway genes and interferon-stimulated genes with the response to interferon therapy for chronic hepatitis C. J Hepatol 49:184-91
Rhodes, S L; Erlich, H; Im, K A et al. (2008) Associations between the human MHC and sustained virologic response in the treatment of chronic hepatitis C virus infection. Genes Immun 9:328-33
Modi, A A; Liang, T J (2008) Hepatitis C: a clinical review. Oral Dis 14:10-4
Yu, Xuekui; Qiao, Ming; Atanasov, Ivo et al. (2007) Cryo-electron microscopy and three-dimensional reconstructions of hepatitis C virus particles. Virology 367:126-34
Lutchman, Glen; Danehower, Susan; Song, Byung-Cheol et al. (2007) Mutation rate of the hepatitis C virus NS5B in patients undergoing treatment with ribavirin monotherapy. Gastroenterology 132:1757-66
Liang, T Jake (2007) Shortened therapy for hepatitis C virus genotype 2 or 3--is less more? N Engl J Med 357:176-8
Yee, Leland J; Tang, Yong-Ming; Kleiner, David E et al. (2007) Myxovirus-1 and protein kinase haplotypes and fibrosis in chronic hepatitis C virus. Hepatology 46:74-83
Feld, Jordan J; Liang, T Jake (2006) Hepatitis C -- identifying patients with progressive liver injury. Hepatology 43:S194-206

Showing the most recent 10 out of 33 publications