Four compounds either being tested or being considered for testing by the NTP were investigated. Two major urinary metabolites of 1,2-dihydro-2,2,4-trimethylquinoline were identified as the 0-sulfate conjugte of 1,2-dihydro-6-hydroxy-2,2,4-trimethylquinoline. The chemical disposition and to some extent the covalent binding of l-chloro-2-methylpropene and 3-chloro-2-methylpropene were investigated. The most noteworthy observation in these studies is that about 33% of the dose of 1-chloro-2-methyl propene is exhaled, unmetabolized, in the first 6 hr. The major urinary metabolite of 3-chloro-2-methylpropene was found to be N-agetyl-S-(2-methylprop-2-enyl)-L-cysteine. It was demonstrated that the naturally-occurring flavone, kaempferol, was hydroxylated to give quercetin in vivo.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES021075-02
Application #
4693191
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
1985
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Lo, Yi-Ching; Liu, Yuxin; Lin, Yi-Chin et al. (2008) Neuronal effects of 4-t-Butylcatechol: a model for catechol-containing antioxidants. Toxicol Appl Pharmacol 228:247-55
Clayton, Natasha P; Yoshizawa, Katsuhiko; Kissling, Grace E et al. (2007) Immunohistochemical analysis of expressions of hepatic cytochrome P450 in F344 rats following oral treatment with kava extract. Exp Toxicol Pathol 58:223-36
Ferguson, Ling-Jen Chen; Lebetkin, Edward H; Lih, Fred B et al. (2007) 14C-labeled pulegone and metabolites binding to alpha2u-globulin in kidneys of male F-344 rats. J Toxicol Environ Health A 70:1416-23
Garner, C E; Sumner, S C J; Davis, J G et al. (2006) Metabolism and disposition of 1-bromopropane in rats and mice following inhalation or intravenous administration. Toxicol Appl Pharmacol 215:23-36
Chen, Ling-Jen; DeRose, Eugene F; Burka, Leo T (2006) Metabolism of furans in vitro: ipomeanine and 4-ipomeanol. Chem Res Toxicol 19:1320-9
Sanders, J M; Chen, L-J; Lebetkin, E H et al. (2006) Metabolism and disposition of 2,2',4,4'- tetrabromodiphenyl ether following administration of single or multiple doses to rats and mice. Xenobiotica 36:103-17
Chen, L-J; Lebetkin, E H; Sanders, J M et al. (2006) Metabolism and disposition of 2,2',4,4',5-pentabromodiphenyl ether (BDE99) following a single or repeated administration to rats or mice. Xenobiotica 36:515-34
Sanders, J M; Lebetkin, E H; Chen, L-J et al. (2006) Disposition of 2,2',4,4',5,5'-hexabromodiphenyl ether (BDE153) and its interaction with other polybrominated diphenyl ethers (PBDEs) in rodents. Xenobiotica 36:824-37
Mathews, James M; Etheridge, Amy S; Valentine, John L et al. (2005) Pharmacokinetics and disposition of the kavalactone kawain: interaction with kava extract and kavalactones in vivo and in vitro. Drug Metab Dispos 33:1555-63
Irwin, Richard D; Parker, Joel S; Lobenhofer, Edward K et al. (2005) Transcriptional profiling of the left and median liver lobes of male f344/n rats following exposure to acetaminophen. Toxicol Pathol 33:111-7

Showing the most recent 10 out of 30 publications