of Work:
Aims : The goal of this project is to improve the quality of molecular modeling and molecular dynamics simulations, and to apply these methods to highly pertinent problems, both from the view of biomedical relevance and methodological challenge. In principle, molecular dynamics simulations offer a detailed atomic level description of the interactions between key biomoilecules of significance to human health. In practice, this methodology is limited by the short simulation times (less than 100 nanoseconds) available with current computer technology, which translates into limited conformational sampling, and by the inaccuracies in the empirical force fields used in the simulations. While a number of groups are attempting to relieve the conformational sampling bottlenecks, we are focusing on improvements to the accuracy of representations, without sacrificing computational efficiency. The long range goal is to do simulations from """"""""first principles"""""""", i.e. without resorting to empirical fitting procedures. This fiscal year our major accomplishment was to extend our method of efficiently treating electrostatics to more detailed models of the electron density. Application to sulfotransferase enzymes. Generally, we wish to understand the similarities and differences between biological phosphates and sulfates. Specifically, we are focusing on providing molecular and quantum mechanical models that relate directly to the crystal structures emerging from our collaborator's laboratory. This fiscal year we completed the building of the ternary complex of heparan sulfotransferase, PAPS, and a heparan dimer. This model has then been used to complete several long simulations of the solvated model. The results of the simulation confirm the importance of key residues previously identified by crystallographic and mutagenesis studies, and suggest the involvement of water in the reaction.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES043010-15
Application #
6432295
Study Section
(LSB)
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
2000
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Min, Jungki; Perera, Lalith; Krahn, Juno M et al. (2018) Probing Dominant Negative Behavior of Glucocorticoid Receptor ? through a Hybrid Structural and Biochemical Approach. Mol Cell Biol :
Li, Yin; Perera, Lalith; Coons, Laurel A et al. (2018) Differential in Vitro Biological Action, Coregulator Interactions, and Molecular Dynamic Analysis of Bisphenol A (BPA), BPAF, and BPS Ligand-ER? Complexes. Environ Health Perspect 126:017012
Perera, Lalith; Li, Yin; Coons, Laurel A et al. (2017) Binding of bisphenol A, bisphenol AF, and bisphenol S on the androgen receptor: Coregulator recruitment and stimulation of potential interaction sites. Toxicol In Vitro 44:287-302
Perera, Lalith; Beard, William A; Pedersen, Lee G et al. (2017) Hiding in Plain Sight: The Bimetallic Magnesium Covalent Bond in Enzyme Active Sites. Inorg Chem 56:313-320
Perera, Lalith; Freudenthal, Bret D; Beard, William A et al. (2017) Revealing the role of the product metal in DNA polymerase ? catalysis. Nucleic Acids Res 45:2736-2745
Almaliti, Jehad; Al-Hamashi, Ayad A; Negmeldin, Ahmed T et al. (2016) Largazole Analogues Embodying Radical Changes in the Depsipeptide Ring: Development of a More Selective and Highly Potent Analogue. J Med Chem 59:10642-10660
Takaku, Motoki; Grimm, Sara A; Shimbo, Takashi et al. (2016) GATA3-dependent cellular reprogramming requires activation-domain dependent recruitment of a chromatin remodeler. Genome Biol 17:36
Perera, Lalith; Freudenthal, Bret D; Beard, William A et al. (2015) Requirement for transient metal ions revealed through computational analysis for DNA polymerase going in reverse. Proc Natl Acad Sci U S A 112:E5228-36
Perera, Lalith; Beard, William A; Pedersen, Lee G et al. (2014) Applications of quantum mechanical/molecular mechanical methods to the chemical insertion step of DNA and RNA polymerization. Adv Protein Chem Struct Biol 97:83-113
Perdivara, Irina; Perera, Lalith; Sricholpech, Marnisa et al. (2013) Unusual fragmentation pathways in collagen glycopeptides. J Am Soc Mass Spectrom 24:1072-81

Showing the most recent 10 out of 52 publications