This Project focuses on (1) The development of methodology for incorporating """"""""cutting-edge"""""""" research findings into future risk assessments; (2) The development of methods for designing studies to improve risk estimates, especially when mechanistic data is involved; (3) The development of methods for the evaluation of exposure, dose-response shape and potency; (4) The development of methods for evaluating mixtures when multiple mechanisms are involved; (5) The development of methods which harmonize cancer and non-cancer health risk assessments; (6) Direct engagement of the regulatory community through expert panels, peer review and collaborative research; (7) Practical improvement of stochastic processes through careful linkage of theoretical developments with computational methods that are accurate and convenient; (8) Collaboration with research groups within the NIEHS and research groups doing similar work to improve the biological understanding of disease incidence; (9) Iterative improvement of the biological basis for disease incidence models through a process of hypothesis testing and laboratory research; (10) Linkage of disease incidence models to toxicokinetics models in a scientifically credible manner; (11) Use of the broadest array of data in both the development of the model and its application; (12) Support of the National Toxicology Program. ? We developed a quantitative, statistically sound methodology for the analysis of suspected gene regulatory networks using gene expression data sets. The method is based on Bayesian networks and provides a means to directly quantify gene-expression networks and test hypotheses regarding the linkages between genes in this network.?
Showing the most recent 10 out of 57 publications