Although iron and copper are essential nutrients, the pathological processes associated with the various forms of metal overload demonstrate that these metals can become toxic when high exposures occur. Examples of occupational poisoning are still reported but dominant interest now lies in the possibility of insidious effects resulting from long term exposures. Cellular injury from toxic metals may occur by a number of molecular mechanisms including metal-induced formation of free radicals. The most direct technique available for the detection of free radicals is ESR spectroscopy which for use in living systems requires a spin- trapping approach. In the study of free radical formation in vivo, we utilized the scavenging reaction in which the hydroxyl radical is converted into the methyl radical via its reaction with dimethyl sulfoxide (DMSO). The methyl radical is them detected as its long-lived phenyl N-t-butylnitrone (PBN) adduct. All of the previous studies used doses of the metals near their LD50 levels. Significantly lower doses did not give detectable radical adduct spectra. Nevertheless, we attempted to detect hydroxyl radical generation in rats with chronic dietary iron loading. Rats were fed a diet modified with 1255 mg/kg iron as ferric citrate. After 10 weeks the rats were given an injection of PBN dissolved in DMSO, and the PBN/CH3 radical adduct was detected in the bile. This was the first evidence of hydroxyl radical generation in chronic iron loaded rats. In addition, we showed that free radical generation occurred in rats when the hepatic iron concentration was relatively low and there was no detectable liver damage. We have also demonstrated experimental procedures necessary to inhibit ex vivo metal ion-induced free radical chemistry in cases of metal overload.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Intramural Research (Z01)
Project #
1Z01ES050117-05
Application #
5202207
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
1995
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Liu, Jie; Qian, Steven Y; Guo, Qiong et al. (2008) Cadmium generates reactive oxygen- and carbon-centered radical species in rats: insights from in vivo spin-trapping studies. Free Radic Biol Med 45:475-81
Jiang, JinJie; Corbett, Jean; Hogg, Neil et al. (2007) An electron paramagnetic resonance investigation of the oxygen dependence of the arterial-venous gradient of nitrosyl hemoglobin in blood circulation. Free Radic Biol Med 43:1208-15
Woods, Courtney G; Burns, Amanda M; Maki, Akira et al. (2007) Sustained formation of alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone radical adducts in mouse liver by peroxisome proliferators is dependent upon peroxisome proliferator-activated receptor-alpha, but not NADPH oxidase. Free Radic Biol Med 42:335-42
Zhong, Zhi; Connor, Henry D; Li, Xiangli et al. (2006) Reduction of ciclosporin and tacrolimus nephrotoxicity by plant polyphenols. J Pharm Pharmacol 58:1533-43
Nakai, Kozo; Kadiiska, Maria B; Jiang, Jin-Jie et al. (2006) Free radical production requires both inducible nitric oxide synthase and xanthine oxidase in LPS-treated skin. Proc Natl Acad Sci U S A 103:4616-21
Kono, Hiroshi; Woods, Courtney G; Maki, Akira et al. (2006) Electron spin resonance and spin trapping technique provide direct evidence that edaravone prevents acute ischemia-reperfusion injury of the liver by limiting free radical-mediated tissue damage. Free Radic Res 40:579-88
Arimoto, Toyoko; Kadiiska, Maria B; Sato, Keizo et al. (2005) Synergistic production of lung free radicals by diesel exhaust particles and endotoxin. Am J Respir Crit Care Med 171:379-87
Zhong, Zhi; Connor, Henry D; Froh, Mattias et al. (2005) Free radical-dependent dysfunction of small-for-size rat liver grafts: prevention by plant polyphenols. Gastroenterology 129:652-64
Yue Qian, Steven; Kadiiska, Maria B; Guo, Qiong et al. (2005) A novel protocol to identify and quantify all spin trapped free radicals from in vitro/in vivo interaction of HO(.-) and DMSO: LC/ESR, LC/MS, and dual spin trapping combinations. Free Radic Biol Med 38:125-35
Kadiiska, M B; Ghio, A J; Mason, R P (2004) ESR investigation of the oxidative damage in lungs caused by asbestos and air pollution particles. Spectrochim Acta A Mol Biomol Spectrosc 60:1371-7

Showing the most recent 10 out of 30 publications