Ocular following responses (OFRs) are the initial tracking eye movements that can be elicited at ultra-short latency by sudden motion of a textured pattern. We recently used motion stimuli consisting of two large coextensive sine-wave gratings with the same orientation but different spatial frequency and moving in -wavelength steps in the same or opposite directions: we found that when the two gratings differed in contrast by more than about an octave then the one with the higher contrast completely dominated the OFR and the one with lower contrast lost its influence as though suppressed. We attributed this winner-take-all (WTA) outcome to nonlinear interactions in the form of mutual inhibition between the mechanisms sensing the competing motions. In the present study, we recorded the initial horizontal OFRs to the horizontal motion of two vertical sine-wave gratings that differed in spatial frequency and were each confined to horizontal strips that extended the full width of our display (45) but were only 1-2 high. The two gratings could be coextensive or separated by a vertical gap of up to 8, and each underwent motion consisting of successive -wavelength steps. Initial OFRs showed strong dependence on the relative contrasts of the competing gratings and when these were coextensive this dependence was always highly nonlinear (WTA), regardless of whether the two gratings moved in the same or opposite direction. When the two gratings moved in opposite directions the nonlinear interactions were purely local: with a vertical gap of 1 or more between the gratings OFRs approximated the linear sum of the responses to each grating alone. On the other hand, when the two gratings moved in the same direction the nonlinear interactions were more global: even with a gap of 8the largest separation triedOFRs were still substantially less than predicted by the linear sum. When the motions were in the same direction, we postulate two nonlinear interactions: local mutual inhibition (resulting in WTA) and global divisive inhibition (resulting in normalization). Motion stimuli whose responses were totally suppressed by coextensive opponent motion of higher contrast were rendered invisible to normalization, suggesting that the local interactions responsible for the WTA behavior here occur at an earlier stage of neural processing than the global interactions responsible for normalization.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Intramural Research (Z01)
Project #
1Z01EY000153-25
Application #
7734586
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
25
Fiscal Year
2008
Total Cost
$743,929
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Kodaka, Y; Sheliga, B M; FitzGibbon, E J et al. (2007) The vergence eye movements induced by radial optic flow: some fundamental properties of the underlying local-motion detectors. Vision Res 47:2637-60
Sheliga, B M; FitzGibbon, E J; Miles, F A (2007) Human vergence eye movements initiated by competing disparities: evidence for a winner-take-all mechanism. Vision Res 47:479-500
Takemura, Aya; Murata, Yumi; Kawano, Kenji et al. (2007) Deficits in short-latency tracking eye movements after chemical lesions in monkey cortical areas MT and MST. J Neurosci 27:529-41
Rucker, Janet C; Sheliga, Boris M; Fitzgibbon, Edmond J et al. (2006) Contrast sensitivity, first-order motion and Initial ocular following in demyelinating optic neuropathy. J Neurol 253:1203-9
Sheliga, B M; Chen, K J; FitzGibbon, E J et al. (2006) The initial ocular following responses elicited by apparent-motion stimuli: reversal by inter-stimulus intervals. Vision Res 46:979-92
Miura, Kenichiro; Matsuura, Kiyoto; Taki, Masakatsu et al. (2006) The visual motion detectors underlying ocular following responses in monkeys. Vision Res 46:869-78
Sheliga, B M; Kodaka, Y; FitzGibbon, E J et al. (2006) Human ocular following initiated by competing image motions: evidence for a winner-take-all mechanism. Vision Res 46:2041-60
Sheliga, B M; FitzGibbon, E J; Miles, F A (2006) Short-latency disparity vergence eye movements: a response to disparity energy. Vision Res 46:3723-40
Sheliga, B M; Chen, K J; Fitzgibbon, E J et al. (2005) Initial ocular following in humans: a response to first-order motion energy. Vision Res 45:3307-21
Sheliga, B M; Chen, K J; Fitzgibbon, E J et al. (2005) Short-latency disparity vergence in humans: evidence for early spatial filtering. Ann N Y Acad Sci 1039:252-9

Showing the most recent 10 out of 22 publications