Retinal pigment epithelial (RPE) cells and the photoreceptor (PR) cells are functionally and developmentally closely integrated. During development of the outer retina in rat, the determinant recognized by the RPE-specific monoclonal antibody RPE-9 is first expressed at post-natal day 3 whereas the PR outer segments (OS) appear at day 5. The OS first appears where RPE cells are already expressing their determinant. RPE-9 recognizes a 67-kDa protein specific to the RPE. This protein is found in mammalian and avian RPE. A membrane-associated protein, it is probably non-glycosylated. We have begun to screen a bovine RPE cDNA library for a cDNA for this protein. We have subcloned DNA fragments corresponding to the first two repeats of bovine IRBP into a bacterial expression vector. IRBP is involved in the transport of retinoids, a functional relationship between the RPE and the PR. The resultant expressed protein fragments will be tested for their ligand-binding and immunological properties.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Intramural Research (Z01)
Project #
1Z01EY000260-01
Application #
3877076
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
1990
Total Cost
Indirect Cost
Name
U.S. National Eye Institute
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Huber, Gesine; Beck, Susanne C; Grimm, Christian et al. (2009) Spectral domain optical coherence tomography in mouse models of retinal degeneration. Invest Ophthalmol Vis Sci 50:5888-95
Maguire, Albert M; Simonelli, Francesca; Pierce, Eric A et al. (2008) Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 358:2240-8
Cortes, Lizette M; Mattapallil, Mary J; Silver, Phyllis B et al. (2008) Repertoire analysis and new pathogenic epitopes of IRBP in C57BL/6 (H-2b) and B10.RIII (H-2r) mice. Invest Ophthalmol Vis Sci 49:1946-56
Lu, Zhongjian; Poliakov, Eugenia; Redmond, T Michael (2006) Identification of a KRAB-zinc finger protein binding to the Rpe65 gene promoter. Curr Eye Res 31:457-66
Moiseyev, Gennadiy; Takahashi, Yusuke; Chen, Ying et al. (2006) RPE65 is an iron(II)-dependent isomerohydrolase in the retinoid visual cycle. J Biol Chem 281:2835-40
Fan, Jie; Wu, Bill X; Sarna, Tadeusz et al. (2006) 9-cis Retinal increased in retina of RPE65 knockout mice with decrease in coat pigmentationt. Photochem Photobiol 82:1461-7
Stoddart, Chris W; Yu, Meaghan J T; Martin-Iverson, Matthew T et al. (2006) Assessing the efficacy of gene therapy in Rpe65-/- mice using photoentrainment of circadian rhythm. Adv Exp Med Biol 572:239-45
Redmond, T Michael; Poliakov, Eugenia; Yu, Shirley et al. (2005) Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci U S A 102:13658-63
Rohrer, Baerbel; Lohr, Heather R; Humphries, Peter et al. (2005) Cone opsin mislocalization in Rpe65-/- mice: a defect that can be corrected by 11-cis retinal. Invest Ophthalmol Vis Sci 46:3876-82
Poliakov, Eugenia; Gentleman, Susan; Cunningham Jr, Francis X et al. (2005) Key role of conserved histidines in recombinant mouse beta-carotene 15,15'-monooxygenase-1 activity. J Biol Chem 280:29217-23

Showing the most recent 10 out of 35 publications