Antitermination increases the transcription of genes that are located downstream of terminators. Transcripts encoded by the cis-acting antitermination sites (put sites) of lambdoid phage HK022 promote readthrough of downstream transcription terminators. Proper conformation of the transcripts is essential for activity, since put mutations that prevent the formation of predicted RNA stems prevented antitermination, and suppressor mutations that restore the stems restored antitermination. Antitermination does not appear to require proteins other than RNA polymerase, since put-dependent readthrough of multiple sequential terminators was observed in a purified transcription system containing only template, polymerase, substrates, buffer, and product. Transcription of put also increased the elongation rate of polymerase, very likely by suppressing pausing. A mutation that alters the zinc-finger region of the beta' subunit of polymerase specifically prevented the put-dependent increases in terminator readthrough and elongation rate. The simplicity of HK022 antitermination contrasts with that of other known antitermination pathways. We propose that the central effector is a transcript that directly alters the elongation properties of RNA polymerase. The integrase proteins of phages lambda and HK022 are closely related site-specific recom binases that recognize different nucleotide sequences in the core regions of their substrates, the att achment sites of the two phages. We have now identified several attachment site nucleotides that inhibit recombination by the non-cognate integrase. These include G4 in the lambda B' core site and A1 and C3 in the HK022 B' and C core sites. Interestingly, nucleotides flanking the canonical core sites also appear to be recognized by integrase.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Intramural Research (Z01)
Project #
1Z01HD000066-26
Application #
2575595
Study Section
Special Emphasis Panel (LMG)
Project Start
Project End
Budget Start
Budget End
Support Year
26
Fiscal Year
1996
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Sloan, Sieghild; Rutkai, Edit; King, Rodney A et al. (2007) Protection of antiterminator RNA by the transcript elongation complex. Mol Microbiol 63:1197-208
Rutkai, Edit; Gyorgy, Andrea; Dorgai, Laszlo et al. (2006) Role of secondary attachment sites in changing the specificity of site-specific recombination. J Bacteriol 188:3409-11
King, Rodney A; Markov, Dmitry; Sen, Ranjan et al. (2004) A conserved zinc binding domain in the largest subunit of DNA-dependent RNA polymerase modulates intrinsic transcription termination and antitermination but does not stabilize the elongation complex. J Mol Biol 342:1143-54
Gottesman, Max E; Weisberg, Robert A (2004) Little lambda, who made thee? Microbiol Mol Biol Rev 68:796-813
King, Rodney A; Sen, Ranjan; Weisberg, Robert A (2003) Using a lac repressor roadblock to analyze the E. coli transcription elongation complex. Methods Enzymol 371:207-18
King, Rodney A; Weisberg, Robert A (2003) Suppression of factor-dependent transcription termination by antiterminator RNA. J Bacteriol 185:7085-91
Weisberg, Robert A; Storz, Gisela (2002) Take your vitamins with a pinch of RNA. Mol Cell 10:1266-8
Sen, Ranjan; King, Rodney A; Mzhavia, Nino et al. (2002) Sequence-specific interaction of nascent antiterminator RNA with the zinc-finger motif of Escherichia coli RNA polymerase. Mol Microbiol 46:215-22
Sen, R; King, R A; Weisberg, R A (2001) Modification of the properties of elongating RNA polymerase by persistent association with nascent antiterminator RNA. Mol Cell 7:993-1001
King, R A; Madsen, P L; Weisberg, R A (2000) Constitutive expression of a transcription termination factor by a repressed prophage: promoters for transcribing the phage HK022 nun gene. J Bacteriol 182:456-62