A new ultrarapid scan spectrometer was used to collect entire spectra with a time resolution of 10 micros, for the first time. Two energy transducing proteins were studied, cytochrome aa3 (cytox) and bacteriorhodopsin (BR). Two new global procedures for spectral analyses were developed, based on the pseudoinverse operator of linear algebra, that allowed a distinction between cytochromes a and a3 of cytox. The kinetic constant for the transfer of the first electron from cytochrome c was about 220 per s. This electron was shared equally between heme a and CuA. In the resting enzyme, the second electron was added slowly (k=about 0.05 per s). Reduction stopped at the 2 electron stage. Small amounts of O2 converted the enzyme to the pulsed state and allowed the full 4 electron reduction. The kinetic rate for internal electron transfer from cytochrome a to a3 increased from about 0.05 per s to about 100 per s. Time resolved kinetic spectra for the BR photocycle were accumulated over a 1000-fold range of laser activation light intensities, and analyzed by single value decomposition. It was found that at low light intensities, a photocycle occurred with a kinetically fast form of the M intermediate (Mf) which decayed directly to the O intermediate. At high light intensities, a different photocycle predominated with a slow form of the M intermediate (Ms) which decayed directly back to BR, without going through the O intermediate. The possibility that cooperative interactions of photons impinging on the fundamental trimer unit of BR is solely responsible for the phenomenon was eliminated by the finding that low levels of Triton destroy the """"""""cooperativity"""""""" before the trimer structure is decomposed to monomers. An essential involvement of membrane phospholipid is indicated.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Intramural Research (Z01)
Project #
1Z01HL000401-27
Application #
3779496
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
27
Fiscal Year
1993
Total Cost
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Hendler, R W; Drachev, L A; Bose, S et al. (2000) On the kinetics of voltage formation in purple membranes of Halobacterium salinarium. Eur J Biochem 267:5879-90
Joshi, M K; Bose, S; Hendler, R W (1999) Regulation of the bacteriorhodopsin photocycle and proton pumping in whole cells of Halobacterium salinarium. Biochemistry 38:8786-93