Protein ubiquitinylation plays a key role in many important cellular processes. Ubiquitinylation requires the E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and, frequently, a substrate-specific E3 ubiquitin-protein ligase. In one class of E3 ubiquitin ligases, the catalytic domain contains a zinc-binding RING finger motif. ARD1 (ADP-ribosylation factor domain protein 1), initially cloned in this laboratory, contains a RING finger domain in the N-terminal region, two predicted B-Boxes, and a coiled-coil protein interaction motif immediately preceding an ADP-ribosylaiton factor domain at the C terminus, belongs to the TRIM (Tripartite motif) or RBCC (RING, B-Box, coiled-coil) family. The region containing the B-Boxes and the coiled-coil motif acts as a GTPase-activating protein for the ADP-ribosylation factor domain of ARD1. We report here that full-length ARD1 or the RING finger domain (residues 1-110) produced polyubiquitinylated proteins in vitro in the presence of mammalian E1, and E2 enzyme (UbcH6 or UbcH5a, -5b, or -5c), ATP, and ubiquitin. Deletion of the RING region or point mutations within the RING sequence abolished ARD1 E3 ligase activity. All data are consistent with a potential function for ARD1 as an E3 ubiquitin ligase in cells.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Intramural Research (Z01)
Project #
1Z01HL000656-15
Application #
7321318
Study Section
(PCCM)
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
2006
Total Cost
Indirect Cost
Name
U.S. National Heart Lung and Blood Inst
Department
Type
DUNS #
City
State
Country
United States
Zip Code
Vichi, Alessandro; Payne, D Michael; Pacheco-Rodriguez, Gustavo et al. (2005) E3 ubiquitin ligase activity of the trifunctional ARD1 (ADP-ribosylation factor domain protein 1). Proc Natl Acad Sci U S A 102:1945-50
Vitale, N; Pacheco-Rodriguez, G; Ferrans, V J et al. (2000) Specific functional interaction of human cytohesin-1 and ADP-ribosylation factor domain protein (ARD1). J Biol Chem 275:21331-9
Vitale, N; Patton, W A; Moss, J et al. (2000) GIT proteins, A novel family of phosphatidylinositol 3,4, 5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J Biol Chem 275:13901-6
Sata, M; Moss, J; Vaughan, M (1999) Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. Proc Natl Acad Sci U S A 96:2752-7
Pacheco-Rodriguez, G; Patton, W A; Adamik, R et al. (1999) Structural elements of ADP-ribosylation factor 1 required for functional interaction with cytohesin-1. J Biol Chem 274:12438-44
Stevens, L A; Moss, J; Vaughan, M et al. (1999) Effects of site-directed mutagenesis of Escherichia coli heat-labile enterotoxin on ADP-ribosyltransferase activity and interaction with ADP-ribosylation factors. Infect Immun 67:259-65
Morinaga, N; Adamik, R; Moss, J et al. (1999) Brefeldin A inhibited activity of the sec7 domain of p200, a mammalian guanine nucleotide-exchange protein for ADP-ribosylation factors. J Biol Chem 274:17417-23
Rudolph, A E; Stuckey, J A; Zhao, Y et al. (1999) Expression, characterization, and mutagenesis of the Yersinia pestis murine toxin, a phospholipase D superfamily member. J Biol Chem 274:11824-31
Moss, J; Vaughan, M (1999) Activation of toxin ADP-ribosyltransferases by eukaryotic ADP-ribosylation factors. Mol Cell Biochem 193:153-7
Togawa, A; Morinaga, N; Ogasawara, M et al. (1999) Purification and cloning of a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors. J Biol Chem 274:12308-15

Showing the most recent 10 out of 11 publications