For many years it was generally believed that the production of reactive oxygen species (ROS) was an unwanted byproduct of aerobic metabolism and other cellular enzymatic processes and that ROS were uniformly deleterious in nature. We have spent the majority of our energies pursuing an alternative hypothesis; that production of ROS are tightly regulated, the targets of ROS are specific, and that oxidants contribute to disease progression, at least in part, through the redox-regulation of specific pathways (See Finkel and Holbrook, Nature, 408, 2000, 239-247; Finkel, T., Current Opinions Cell Biol., 15; 2003, 247-254; Balaban, Nemoto and Finkel, Cell 120, 2005, 483-497). ? ? Nearly ten years ago we observed that certain cells produce high levels of ROS when stimulated by peptide growth factors (Sundaresan et al, Science 1995, 270 296-299). The production of ROS was transient, peaking in the first few minutes following ligand stimulation and returning to baseline within 30 minutes after stimulation. Our initial observation was in vascular smooth muscle cells stimulated with the growth factor PDGF, but subsequently it has become clear that similar events transpire in a wide variety of different cell types stimulated by a host of different ligands. Interestingly we found that inhibiting this rise in ROS blocked the initial signaling events demonstrating an essential role in ROS generation for normal physiological signal transduction. ? We have also previously demonstrated that the source of the ligand stimulated ROS-generator in non-phagocytic cells shared certain molecular and biochemical similarities with the phagocytic NADPH oxidase. In particular, we were able to demonstrate a role for the small GTPase Rac1 in the regulation of the intracellular redox state. We have also shown with the help of our collaborators that the related GTPase Ras also plays an important role in redox regulation within cells. Interestingly, the ability of Ras proteins to induce transformation in the context of immortalized cell, or to induce senescence in the context of primary cells, appears dependent in some fashion on the ability of Ras proteins to induce a change in the level of ROS.? ? These observations have been extended recently in our lab in an attempt to understand the molecular regulators of mitochondrial ROS production as well as mitochondrial oxygen consumption. We have recently been able to demonstrate a connection between three pathways that regulate lifespan and the production of mitochondrial oxidants. These pathways include the NAD-dependent deacetylase SIRT1, the adapter molecule p66shc and the the mTOR pathway. Together these observations therefore raise fundamental question as to how oxidants participate in disease processes. In particular, do oxidants contribute to aging or to diseases such as atherosclerosis, neurodegeneration or cancer through random non-specific damage or instead do they produce disease phenotypes through the activation of specific redox-sensitive processes. ? ? Among the advances we have made this year is understanding the relationship between mitochondrial metabolism and embryonic stem cell fate. We have also actively pursed the process of autophagy, a cellular adpatation to starvation. We have implicated the putative longevity gene Sirt1 in this process. In addition, we have described a role for mTOR and p66shc in cellular metabolism. We are actively pusuing the implications of these observations in a number of cellular and animal model systems.?
Finkel, Toren (2012) Relief with rapamycin: mTOR inhibition protects against radiation-induced mucositis. Cell Stem Cell 11:287-8 |
Finkel, Toren; Quyyumi, Arshed A (2011) Genetic links between circulating cells and cardiovascular risk. Circ Cardiovasc Genet 4:218-20 |
Lee, In Hye; Finkel, Toren (2009) Regulation of autophagy by the p300 acetyltransferase. J Biol Chem 284:6322-8 |
Finkel, Toren; Hwang, Paul M (2009) The Krebs cycle meets the cell cycle: mitochondria and the G1-S transition. Proc Natl Acad Sci U S A 106:11825-6 |
Liu, Hongjun; Fergusson, Maria M; Castilho, Rogerio M et al. (2007) Augmented Wnt signaling in a mammalian model of accelerated aging. Science 317:803-6 |
Schieke, Stefan M; Finkel, Toren (2007) TOR and aging: less is more. Cell Metab 5:233-5 |
Song, Shiwei; Finkel, Toren (2007) GAPDH and the search for alternative energy. Nat Cell Biol 9:869-70 |
Finkel, Toren; Serrano, Manuel; Blasco, Maria A (2007) The common biology of cancer and ageing. Nature 448:767-74 |
Cheung, Kevin J; Tzameli, Iphigenia; Pissios, Pavlos et al. (2007) Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab 5:115-28 |
Khakoo, Aarif Y; Pati, Shibani; Anderson, Stasia A et al. (2006) Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi's sarcoma. J Exp Med 203:1235-47 |
Showing the most recent 10 out of 46 publications