There is no dependable general way of quantifying the times at which an average virus reproduces. In macroscopic terms, what are the litter sizes and breeding times of an average virus in a culture? This project develops mathematical and experimental techniques for determining the average number of daughter virions from a single mother virion, when these daughters attach to their cell, the average cycle time for the daughters, and the standard deviation (spread) of the viral cycle time. These determinations can be made from flow cytometry experiments. Target cells are stained with lipid dyes, and viruses syncronized at their attachment phase by incubating them with the stained generation 0 cells. By collecting data on a marker of infection (in actual experiments, this will be gp41 inHIV), both in generation 0 stained cells and unstained cells that are added later and incubated with the infected generation 0cells, the reproduction of the average virus can be determined as the solution of an integral equation. The same methods can in principle be employed in calculating litter sizes and breeding cycle times of an animal, after a homogeneous group of the animals is released into the wild and several population counts taken. In the medical context, however, this work is intended to improve the quantitation of various HIV therapies and their inhibitory effects on HIV reproduction. Computer programs are now in place, a theoretical paper has been written, and experimental protocols are now being carried out. - human immunodeficiency virus, mathematical modeling, quantifying reproduction, viral assays
Spouge, J L; Layne, S P (1999) A practical method for simultaneously determining the effective burst sizes and cycle times of viruses. Proc Natl Acad Sci U S A 96:7017-22 |