We are interested in improving the efficiency of retroviral mediated gene transfer. Retroviral vectors provide the most efficient means of stably expressing genes in cells both in vitro and in vivo. However not all types of cells are efficiently infected by retroviruses. We have developed an approach that allows us to infect cells that are refractory to retroviral infection. This approach is predicated on identifying and functionally characterizing the receptors used by retroviral vectors to gain entry into cells and mapping the regions of the cellular receptor which are critical for retrovirus-receptor interaction. We have used three different types of recombinant vectors, two murine based vectors (ecotropic and amphotropic) and a gibbon ape vector (GaLV) in our analyses. 1. We have cloned a murine ecotropic receptor and precisely mapped the amino acid residues that are critical for binding and entry of ecotropic vectors. 2. A segment of human DNA which confers susceptibility to amphotropic virus infection (a putative amphotropic receptor) has been functionally identified and is in the process of being isolated and molecularly characterized. 3. We have used oligomeric probes derived from the GaLV receptor sequence to examine spatial and temporal expression of receptor mRNAs in the rat by in situ hybridization. If the GaLV receptor is restricted to a certain cell type, it may be possible to target genes using GaLV retroviral vectors to a particular tissue. We have also initiated studies to functionally map the GaLV binding region of the receptor.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Intramural Research (Z01)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
U.S. National Institute of Mental Health
United States
Zip Code
Emery, Andrew C; Xu, Wenqin; Eiden, Maribeth V et al. (2017) Guanine nucleotide exchange factor Epac2-dependent activation of the GTP-binding protein Rap2A mediates cAMP-dependent growth arrest in neuroendocrine cells. J Biol Chem 292:12220-12231
Emery, Andrew C; Alvarez, Ryan A; Abboud, Philip et al. (2016) C-terminal amidation of PACAP-38 and PACAP-27 is dispensable for biological activity at the PAC1 receptor. Peptides 79:39-48
Farrell, Karen B; Tusnady, Gabor E; Eiden, Maribeth V (2009) New structural arrangement of the extracellular regions of the phosphate transporter SLC20A1, the receptor for gibbon ape leukemia virus. J Biol Chem 284:29979-87
Oliveira, Nidia M; Satija, Harshita; Kouwenhoven, I Arlette et al. (2007) Changes in viral protein function that accompany retroviral endogenization. Proc Natl Acad Sci U S A 104:17506-11
Oliveira, Nidia M; Farrell, Karen B; Eiden, Maribeth V (2006) In vitro characterization of a koala retrovirus. J Virol 80:3104-7
Gemeniano, Malou; Mpanju, Onesmo; Salomon, Daniel R et al. (2006) The infectivity and host range of the ecotropic porcine endogenous retrovirus, PERV-C, is modulated by residues in the C-terminal region of its surface envelope protein. Virology 346:108-17
Farrell, Karen B; Eiden, Maribeth V (2005) Dissection of gammaretroviral receptor function by using type III phosphate transporters as models. J Virol 79:9332-6
Wang, Wei; Jobbagy, Zsolt; Bird, Terry H et al. (2005) Cell signaling through the protein kinases cAMP-dependent protein kinase, protein kinase Cepsilon, and RAF-1 regulates amphotropic murine leukemia virus envelope protein-induced syncytium formation. J Biol Chem 280:16772-83
Feldman, Steven A; Farrell, Karen B; Murthy, Ravi K et al. (2004) Identification of an extracellular domain within the human PiT2 receptor that is required for amphotropic murine leukemia virus binding. J Virol 78:595-602
Khadeer, Mohammed A; Tang, Zhihui; Tenenhouse, Harriet S et al. (2003) Na+-dependent phosphate transporters in the murine osteoclast: cellular distribution and protein interactions. Am J Physiol Cell Physiol 284:C1633-44

Showing the most recent 10 out of 21 publications