The physiological correlates of the major stages in the morphogenesis of the mammalian central nervous system (CNS), including proliferation, apoptosis, migration and differentiation remain to be elucidated. We have used electrophysiological and digital videomicroscopic (DVM) techniques to study the development, differentiation and cellular distribution of physiological properties expressed by proliferating, progenitor and differentiating embryonic (E) rat CNS cells recorded in situ or in dissociated cell culture. Electrical recordings access excitable membrane properties in single cells and coupled pairs of cells in real time. DVM techniques that permit simultaneous study of cytoplasmic Ca (cCa) in approximately 100 cells at near real-time rates have been set up during FY97 and preliminary recordings carried out. Our long-term aim is to discover how excitable membrane properties together with fluctuations in cCa underlie the complex process of CNS morphogenesis. One principal line of investigation involves physiological co- differentiation of astrocytes and neurons in vitro. In vivo, astrocytes differentiate together with neurons throughout the late-embryonic mammalian CNS. During FY97, electrophysiological recordings of embryonic hippocampal neurons cultured directly on confluent astrocytes or in serum- free medium conditioned by astrocytes revealed that astrocytes promote the differentiation of specific neuronal properties, including membrane surface area and densities of inotropic current responses to major amino acid neurotransmitters and ligands (GABA, glycine, kainate and NMDA). We have not yet resolved whether the astrocyte-enhanced densities of the major transmitter receptor-coupled macroscopic currents reflects an increase in the surface expression of the receptor/channels and/or changes in their elementary biophysical properties. These astrocyte-mediated effects can be completely blocked by antagonism of either GABA receptor/Cl channels or inotropic glutamate (NMDA and non-NMDA) receptors, implicating each of these different families of receptors in the astrocyte-directed differentiation. The astrocyte effects can also be eliminated by preventing cCa levels to fluctuate in the differentiating neurons. Collectively, these results indicate that astrocytes secrete factor(s), which utilize GABA and glutamate receptors expressed on the neuronal surface, perhaps to generate fluctuations in cCa critical to the complex process of neuronal differentiation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002019-25
Application #
6162986
Study Section
Special Emphasis Panel (LNP)
Project Start
Project End
Budget Start
Budget End
Support Year
25
Fiscal Year
1997
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Su, Tung-Ping; Zhang, Lei; Chung, Ming-Yi et al. (2009) Levels of the potential biomarker p11 in peripheral blood cells distinguish patients with PTSD from those with other major psychiatric disorders. J Psychiatr Res 43:1078-85
Nielsen, Joseph A; Lau, Pierre; Maric, Dragan et al. (2009) Integrating microRNA and mRNA expression profiles of neuronal progenitors to identify regulatory networks underlying the onset of cortical neurogenesis. BMC Neurosci 10:98
Lee, Cheol; Gyorgy, Andrea; Maric, Dragan et al. (2008) Members of the NuRD Chromatin Remodeling Complex Interact with AUF1 in Developing Cortical Neurons. Cereb Cortex :
Zhang, L; Li, H; Su, T P et al. (2008) p11 is up-regulated in the forebrain of stressed rats by glucocorticoid acting via two specific glucocorticoid response elements in the p11 promoter. Neuroscience 153:1126-34
Ma, Wu; Tavakoli, Tahereh; Chen, Silvia et al. (2008) Reconstruction of functional cortical-like tissues from neural stem and progenitor cells. Tissue Eng Part A 14:1673-86
Maric, Dragan; Fiorio Pla, Alessandra; Chang, Yoong Hee et al. (2007) Self-renewing and differentiating properties of cortical neural stem cells are selectively regulated by basic fibroblast growth factor (FGF) signaling via specific FGF receptors. J Neurosci 27:1836-52
Nielsen, Joseph A; Maric, Dragan; Lau, Pierre et al. (2006) Identification of a novel oligodendrocyte cell adhesion protein using gene expression profiling. J Neurosci 26:9881-91
Hillion, Joelle A; Li, YiXin; Maric, Dragan et al. (2006) Involvement of Akt in preconditioning-induced tolerance to ischemia in PC12 cells. J Cereb Blood Flow Metab 26:1323-31
Zhang, L; Sukhareva, M; Barker, J L et al. (2005) Direct binding of estradiol enhances Slack (sequence like a calcium-activated potassium channel) channels' activity. Neuroscience 131:275-82
Fiorio Pla, Alessandra; Maric, Dragan; Brazer, So-Ching et al. (2005) Canonical transient receptor potential 1 plays a role in basic fibroblast growth factor (bFGF)/FGF receptor-1-induced Ca2+ entry and embryonic rat neural stem cell proliferation. J Neurosci 25:2687-701

Showing the most recent 10 out of 39 publications