The Animal Models Unit has employed a murine model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), to focus on the mechanisms driving pathogenic autoreactivity and triggers of autoimmunity in the CNS as well as investigating new modalities to treat disease that could be extended to therapies in MS. ? The study of humanized transgenic mice as a model of T cell receptor/ antigen/MHC interactions relevant to autoimmunity within the CNS is one focus of the group. We have wrapped up the characterization of two strains of transgenic mice carrying myelin reactive TCRs, and shown that the strain with the higher expression of MHC class II molecules can spontaneously develop autoimmunity at a low rate, serving as one of only a handful of models of spontaneous autoimmunity currently available. Further investigations within these models have shown that substituting the cognate antigen with a more stimulatory peptide allows for greater disease development irrespective of factors such as autoreactive T cell precursor frequency. Moreover, proteins within several human pathogens have been identified with homology to these stimulatory autoantigens, and serve as molecular mimics of the autoantigens in stimulating autoreactive T cells and driving the process of autoimmunity in these mice. ? The second focus of studies has been the investigation into new therapeutic approaches to treat autoimmune demyelination in the CNS using EAE. The first approach targets a reduction in the inflammatory component of the disease. In collaboration with John Hallenbeck of the Stroke Branch, NINDS, we have thus far shown that intranasal administration of the human cell adhesion molecule E selectin results in a tolerization process to this molecule. In the active induction model of EAE, E selectin tolerization pretreatment can reduce the incidence and severity of clinical symptoms once disease is induced. Moreover, preliminary studies also show a reduction in the severity of disease when E selectin is administered once disease has been established, emphasizing the therapeutic potential of this approach. Studies to identify the tolerogenic populations generated and their mechanisms of action in this model are ongoing. A patent application for this work is being finalized. A second study in collaboration with James Mitchell, NCI has been investigating the potential for a well characterized anti-oxidant to prevent or treat autoimmune demyelination in the EAE model, and thus far shows the ability to reduce the severity of clinical disease by two thirds when animals are maintained on the antioxidant diet.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002204-31
Application #
7322938
Study Section
(NIB)
Project Start
Project End
Budget Start
Budget End
Support Year
31
Fiscal Year
2006
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
McFarland, Henry F (2008) The B cell--old player, new position on the team. N Engl J Med 358:664-5
McFarland, Henry F; Martin, Roland (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913-9
Cassiani-Ingoni, Riccardo; Cabral, Erik S; Lunemann, Jan D et al. (2006) Borrelia burgdorferi Induces TLR1 and TLR2 in human microglia and peripheral blood monocytes but differentially regulates HLA-class II expression. J Neuropathol Exp Neurol 65:540-8
Cassiani-Ingoni, Riccardo; Coksaygan, Turhan; Xue, Haipeng et al. (2006) Cytoplasmic translocation of Olig2 in adult glial progenitors marks the generation of reactive astrocytes following autoimmune inflammation. Exp Neurol 201:349-58
Brachmann, Andreas; Baxa, Ulrich; Wickner, Reed Brendon (2005) Prion generation in vitro: amyloid of Ure2p is infectious. EMBO J 24:3082-92
Quandt, Jacqueline A; Baig, Mirza; Yao, Karen et al. (2004) Unique clinical and pathological features in HLA-DRB1*0401-restricted MBP 111-129-specific humanized TCR transgenic mice. J Exp Med 200:223-34
Martin, Roland; Leppert, David (2004) A plea for ""omics"" research in complex diseases such as multiple sclerosis--a change of mind is needed. J Neurol Sci 222:3-5
Huh, Jaebong; Yao, Karen; Quigley, Laura et al. (2004) Limited repertoire of HLA-DRB1*0401-restricted MBP111-129-specific T cells in HLA-DRB1*0401 Tg mice and their pathogenic potential. J Neuroimmunol 151:94-102
Anderson, Stasia A; Shukaliak-Quandt, Jacqueline; Jordan, Elaine K et al. (2004) Magnetic resonance imaging of labeled T-cells in a mouse model of multiple sclerosis. Ann Neurol 55:654-9
Bomprezzi, Roberto; Ringner, Markus; Kim, Seungchan et al. (2003) Gene expression profile in multiple sclerosis patients and healthy controls: identifying pathways relevant to disease. Hum Mol Genet 12:2191-9

Showing the most recent 10 out of 17 publications