The objective of this program is to identify and functionally characterize neurogenic genes that are required for CNS development. Given the high conservation in basic developmental mechanisms used by all metazoans, we have focused our efforts on the study of CNS development in the fruit fly (Drosophila melanogaster), where the genetic information required for these events is accessible. Using classical genetic, molecular biology and transgenic techniques, we have continued to study the function of genes expressed during neuroblast lineage differentiation. Thus far, our study of castor (cas), a novel Zinc finger gene required for proper CNS neuroblast development, has revealed that it encodes a nuclear located, sequence-specific DNA- binding protein whose expression is restricted to late forming CNS neuronal precursor sublineages. We hypothesize that the Cas protein functions as a transcription factor required for correct regulation of genes in these cells. Our recent studies have shown that cas controls cell fate decisions by regulating the expression of all known POU genes during CNS development. POU transcription factors establish neuronal identities in metazoans, yet little is known about the regulatory networks controlling their expression. While Cas is required for the silencing of both pdm-1 and -2 gene expression (early lineage determinants), the drifter and I-POU genes require Cas for their full expression. Cas shares DNA-binding specificity with another pdm repressor, the gap-segmentation gene regulator Hunchback (Hb). Our studies reveal for the first time that all CNS ganglia contain sequentially layered neuroblast progeny subpopulations that can be distinguished by their expression of either Hb, Pdm-1 or Cas. Hb and Cas may directly silence pdm expression in early and late developing neuroblast sublineages, respectively, as pdm-1 regulatory DNA contains about 32 Hb/Cas binding sites and its enhancer(s) are ectopically activated in cas- neuroblasts. By ensuring correct POU gene expression boundaries, hb and cas maintain temporal subdivisions in the cell- identity circuitry controlling CNS cellular diversity. An enhancer-trap screen for additional genes required by late neuroblast sublineages has yielded a transformant line that expresses beta-gal in a subset of these cells. We have mapped its P-element integration site to the second chromosome at map position 45F; set up P-element mobilization screens to isolate imprecise-excision mutations; cloned 25 kb of genomic DNA surrounding the P-element insertion; and, are now screening cDNA libraries. This enhancer-trap line has a homozygous viable neurologic defect, presumably due either to a hypomorphic or knockout mutation caused by the P-element insertion. When compared to wild type behavior, both larvae and adults are less active. Mutant adults do not fly and, although they exhibit other normal behaviors, their locomotion during these activities is significantly reduced. Additional tests are underway to characterize this phenotype.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002820-08
Application #
6163050
Study Section
Special Emphasis Panel (LNC)
Project Start
Project End
Budget Start
Budget End
Support Year
8
Fiscal Year
1997
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Yavatkar, Amarendra S; Lin, Yong; Ross, Jermaine et al. (2008) Rapid detection and curation of conserved DNA via enhanced-BLAT and EvoPrinterHD analysis. BMC Genomics 9:106
Brody, Thomas; Rasband, Wayne; Baler, Kevin et al. (2008) Sequence conservation and combinatorial complexity of Drosophila neural precursor cell enhancers. BMC Genomics 9:371
Brody, Thomas; Yavatkar, Amarendra S; Lin, Yong et al. (2008) Horizontal gene transfers link a human MRSA pathogen to contagious bovine mastitis bacteria. PLoS ONE 3:e3074
Kuzin, Alexander; Kundu, Mukta; Brody, Thomas et al. (2007) The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system. Dev Biol 310:35-43
Missirlis, Fanis; Kosmidis, Stylianos; Brody, Tom et al. (2007) Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin. Genetics 177:89-100
Brody, Thomas; Rasband, Wayne; Baler, Kevin et al. (2007) cis-Decoder discovers constellations of conserved DNA sequences shared among tissue-specific enhancers. Genome Biol 8:R75
Kuzin, Alexander; Brody, Thomas; Moore, Adrian W et al. (2005) Nerfin-1 is required for early axon guidance decisions in the developing Drosophila CNS. Dev Biol 277:347-65
Brody, Thomas; Odenwald, Ward F (2005) Regulation of temporal identities during Drosophila neuroblast lineage development. Curr Opin Cell Biol 17:672-5
Odenwald, Ward F; Rasband, Wayne; Kuzin, Alexander et al. (2005) EVOPRINTER, a multigenomic comparative tool for rapid identification of functionally important DNA. Proc Natl Acad Sci U S A 102:14700-5
Odenwald, Ward F (2005) Changing fates on the road to neuronal diversity. Dev Cell 8:133-4

Showing the most recent 10 out of 18 publications