HIV-1 associated encephalopathy can show either minor or severe cognitive impariments refered to as the AIDS dementia complex as well as motor dysfunction. HIV-1 causes damage in the human brain through both direct infection and indirect mechanisms through viral structural or non-structural proteins. We have found that HIV-1 infection in children results in a different pathological consequence than in adults. There is loss of neurons, calcifications in basal ganglia structures, and cortial atrophy. We have also identified HIV-1 infection in cells that are phenotypically progenitor cells, nestin positive. These cells reside in the subventricular zone and hippocampus. In a series of 9 autopsy brain tissues, we have found a number of HIV-1 infected nestin positive cells using laser capture microdissection and PCR of viral sequences. This confirms the laboratory finding of the susceptibility of HIV-1 to infect a cell line of human brain derived progenitor cells. The ability of HIV-1 proteins, particularly tat, which is a transactivating protein to regulate cellular functions helps explain the dysfunction of the nervous system in brain tissue where there is little evidence of active virus multiplication. We found that HIV-1 infection in glial cells up regulates the synthesis and release of the beta-chemokine MCP-1 which is also found in elevated levels in the CSF of AIDS patients with dementia. Elevated levels of MCP-1 in the CSF is being studied by other AIDS Neuro Centers and has been confirmed by several other laboratories. It may serve as a surrogate marker for AIDS assoicated dementia. We have also shown that human astrocytes are responsible for MCP-1 release and that transcriptional control may be the key factor. The MCP-1 released chemoattracts monocytes across the barrier and upregulates the beta-chemokine HIV-1 co-receptor, CCR5, on migrating monocytes. The promoter sequences of the human MCP- 1 promoter shows inducible NF-1/AP-1 sites which are sensitive to the HIV-1 protein tat. We have identified the distal region of the human MCP-1 promoter as most active in regulating MCP-1 synthesis in astrocytes, indicating a role for DNA binding proteins in astrocytes that are responsive to cytokines like TNF-alpha. We have also found that MCP-1 synthesis is greatly enhanced when human fetal progenitor cells are differentiated to glial phenotypes due to activation of NF-kB in the distal region of the MCP-1 promoter. The pathological consequnces of the presence of HIV-1 in the brain needs further study.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Intramural Research (Z01)
Project #
1Z01NS002851-15
Application #
7324260
Study Section
(LMMN)
Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
2006
Total Cost
Indirect Cost
City
State
Country
United States
Zip Code
Bachis, Alessia; Biggio, Francesca; Major, Eugene O et al. (2009) M- and T-tropic HIVs promote apoptosis in rat neurons. J Neuroimmune Pharmacol 4:150-60
Lawrence, Diane M P; Seth, Pankaj; Durham, Linda et al. (2006) Astrocyte differentiation selectively upregulates CCL2/monocyte chemoattractant protein-1 in cultured human brain-derived progenitor cells. Glia 53:81-91
Schwartz, Lynnae; Major, Eugene O (2006) Neural progenitors and HIV-1-associated central nervous system disease in adults and children. Curr HIV Res 4:319-27
Seth, P; Major, E O (2005) Human brain derived cell culture models of HIV-1 infection. Neurotox Res 8:83-9
Janabi, Nazila; Jensen, Peter N; Major, Eugene O (2004) Differential effects of interferon-gamma on the expression of cyclooxygenase-2 in high-grade human gliomas versus primary astrocytes. J Neuroimmunol 156:113-22
Lawrence, Diane M P; Durham, Linda C; Schwartz, Lynnae et al. (2004) Human immunodeficiency virus type 1 infection of human brain-derived progenitor cells. J Virol 78:7319-28
Buch, Shilpa; Sui, Yongjun; Potula, Raghava et al. (2004) Role of interleukin-4 and monocyte chemoattractant protein-1 in the neuropathogenesis of X4 simian human immunodeficiency virus infection in macaques. J Neurovirol 10 Suppl 1:118-24
Bachis, Alessia; Major, Eugene O; Mocchetti, Italo (2003) Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization. J Neurosci 23:5715-22
Sabri, Farideh; Chiodi, Francesca; Piret, Jean-Pascal et al. (2003) Soluble factors released by virus specific activated cytotoxic T-lymphocytes induce apoptotic death of astroglioma cell lines. Brain Pathol 13:165-75
Roseti, L; Grigolo, B; Neri, S et al. (2003) Establishment of a new human immortalized chondrocyte cell line. Chir Organi Mov 88:357-62

Showing the most recent 10 out of 16 publications