Our laboratory has been actively studying the pathogenesis of alcoholic liver disease, focusing on the role of acetaldehyde dehydrogenase 2 (ALDH2) and prednisolone in alcoholic liver injury, and we have also developed a mouse model of chronic plus binge ethanol feeding model, which represents early stages of human alcoholic steatohepatitis. By using this model, we have demonstrated (1) that E-selectin plays an important role in promoting neutrophil infiltration in alcoholic liver injury;(2) that aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice;(3)that prednisolone treatment has opposing functions on T/NKT cell- and hepatotoxin-mediated hepatitis in mice. Chronic plus binge ethanol feeding synergistically induces neutrophil infiltration and liver injury in mice: a critical role for E-selectin. Chronic plus binge ethanol feeding acts synergistically to induce liver injury in mice, but the mechanisms underlying this phenomenon remain unclear. Here, we show that chronic plus binge ethanol feeding synergistically up-regulated the hepatic expression of interleukin-1βand tumor necrosis factor alpha and induced neutrophil accumulation in the liver, compared with chronic or binge feeding alone. In vivo depletion of neutrophils through administration of an anti-Ly6G antibody markedly reduced chronic-binge ethanol feeding-induced liver injury. Real-time polymerase chain reaction analyses revealed that hepatic E-selectin expression was up-regulated 10-fold, whereas expression of other neutrophil infiltration-related adhesion molecules (e.g., P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1) was slightly up- or down-regulated in this chronic-binge model. The genetic deletion of E-selectin prevented chronic-binge ethanol-induced hepatic neutrophil infiltration as well as elevation of serum transaminases without affecting ethanol-induced steatosis. In addition, E-selectin-deficient mice showed reduced hepatic expression of several proinflammatory cytokines, chemokines, and adhesion molecules, compared to wild-type mice, after chronic-binge ethanol feeding. Finally, the expression of E-selectin was highly up-regulated in human alcoholic fatty livers, but not in alcoholic cirrhosis. CONCLUSIONS: Chronic-binge ethanol feeding up-regulates expression of proinflammatory cytokines, followed by the induction of E-selectin. Elevated E-selectin plays an important role in hepatic neutrophil infiltration and injury induced by chronic-binge feeding in mice and may also contribute to the pathogenesis of early stages of human alcoholic liver disease. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Aldehyde dehydrogenase 2 (ALDH2) is the major enzyme that metabolizes acetaldehyde produced from alcohol metabolism. Approximately 40-50% of East Asians carry an inactive ALDH2 gene and exhibit acetaldehyde accumulation after alcohol consumption. However, the role of ALDH2 deficiency in the pathogenesis of alcoholic liver injury remains obscure. In the present study, wild-type and ALDH2(-/-) mice were subjected to ethanol feeding and/or carbon tetrachloride (CCl4 ) treatment, and liver injury was assessed. Compared with wild-type mice, ethanol-fed ALDH2(-/-) mice had higher levels of malondialdehyde-acetaldehyde (MAA) adduct and greater hepatic inflammation, with higher hepatic interleukin (IL)-6 expression but surprisingly lower levels of steatosis and serum alanine aminotransferase (ALT). Higher IL-6 levels were also detected in ethanol-treated precision-cut liver slices from ALDH2(-/-) mice and in Kupffer cells isolated from ethanol-fed ALDH2(-/-) mice than those levels in wild-type mice. In vitro incubation with MAA enhanced the lipopolysaccharide (LPS)-mediated stimulation of IL-6 production in Kupffer cells. In agreement with these findings, hepatic activation of the major IL-6 downstream signaling molecule signal transducer and activator of transcription 3 (STAT3) was higher in ethanol-fed ALDH2(-/-) mice than in wild-type mice. An additional deletion of hepatic STAT3 increased steatosis and hepatocellular damage in ALDH2(-/-) mice. Finally, ethanol-fed ALDH2(-/-) mice were more prone to CCl4 -induced liver inflammation and fibrosis than ethanol-fed wild-type mice. CONCLUSION: ALDH2(-/-) mice are resistant to ethanol-induced steatosis but prone to inflammation and fibrosis by way of MAA-mediated paracrine activation of IL-6 in Kupffer cells. These findings suggest that alcohol, by way of acetaldehyde and its associated adducts, stimulates hepatic inflammation and fibrosis independent from causing hepatocyte death, and that ALDH2-deficient individuals may be resistant to steatosis and blood ALT elevation, but are prone to liver inflammation and fibrosis following alcohol consumption. Opposing effects of prednisolone treatment on T/NKT cell- and hepatotoxin-mediated hepatitis in mice. Prednisolone is a corticosteroid that has been used to treat inflammatory liver diseases such as autoimmune hepatitis and alcoholic hepatitis. However, the results have been controversial, and how prednisolone affects liver disease progression remains unknown. In the current study we examined the effect of prednisolone treatment on several models of liver injury, including T/NKT cell hepatitis induced by concanavalin A (ConA) and α-galactosylceramide (α-GalCer), and hepatotoxin-mediated hepatitis induced by carbon tetrachloride (CCl4 ) and/or ethanol. Prednisolone administration attenuated ConA- and α-GalCer-induced hepatitis and systemic inflammatory responses. Treating mice with prednisolone also suppressed inflammatory responses in a model of hepatotoxin (CCl4 )-induced hepatitis, but surprisingly exacerbated liver injury and delayed liver repair. In addition, administration of prednisolone also enhanced acetaminophen-, ethanol-, or ethanol plus CCl4 -induced liver injury. Immunohistochemical and flow cytometric analyses demonstrated that prednisolone treatment inhibited hepatic macrophage and neutrophil infiltration in CCl4 -induced hepatitis and suppressed their phagocytic activities in vivo and in vitro. Macrophage and/or neutrophil depletion aggravated CCl4 -induced liver injury and impeded liver regeneration. Finally, conditional disruption of glucocorticoid receptor in macrophages and neutrophils abolished prednisolone-mediated exacerbation of hepatotoxin-induced liver injury. CONCLUSION: Prednisolone treatment prevents T/NKT cell hepatitis but exacerbates hepatotoxin-induced liver injury by inhibiting macrophage- and neutrophil-mediated phagocytic and hepatic regenerative functions. These findings may not only increase our understanding of the steroid treatment mechanism but also help us to better manage steroid therapy in liver diseases.

Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Alcohol Abuse and Alcoholism
Department
Type
DUNS #
City
State
Country
Zip Code
Ouyang, Xinshou; Han, Sheng-Na; Zhang, Ji-Yuan et al. (2018) Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1? Transactivation in Steatohepatitis. Cell Metab 27:1156
Alves-Paiva, Raquel M; Kajigaya, Sachiko; Feng, Xingmin et al. (2018) Telomerase enzyme deficiency promotes metabolic dysfunction in murine hepatocytes upon dietary stress. Liver Int 38:144-154
Ouyang, Xinshou; Han, Sheng-Na; Zhang, Ji-Yuan et al. (2018) Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1? Transactivation in Steatohepatitis. Cell Metab 27:339-350.e3
Gao, Bin; Xiang, Xiaogang (2018) Interleukin-22 from bench to bedside: a promising drug for epithelial repair. Cell Mol Immunol :
Chen, Hanqing; Shen, Feng; Sherban, Alex et al. (2018) DEP domain-containing mTOR-interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acute-on-chronic liver injury in alcoholic liver disease. Hepatology 68:496-514
Guillot, Adrien; Gasmi, Imène; Brouillet, Arthur et al. (2018) Interleukins-17 and 27 promote liver regeneration by sequentially inducing progenitor cell expansion and differentiation. Hepatol Commun 2:329-343
Li, Hongjie; Feng, Dechun; Cai, Yan et al. (2018) Hepatocytes and neutrophils cooperatively suppress bacterial infection by differentially regulating lipocalin-2 and neutrophil extracellular traps. Hepatology 68:1604-1620
Jiang, Yiming; Feng, Dechun; Ma, Xiaochao et al. (2018) Pregnane X Receptor Regulates Liver Size and Liver Cell Fate via Yes-associated Protein Activation. Hepatology :
Li, Man; He, Yong; Zhou, Zhou et al. (2017) MicroRNA-223 ameliorates alcoholic liver injury by inhibiting the IL-6-p47phox-oxidative stress pathway in neutrophils. Gut 66:705-715
He, Yong; Gao, Bin (2017) A small specific-sized hyaluronic acid ameliorates alcoholic liver disease by targeting a small RNA: New hope for therapy? Hepatology 66:321-323

Showing the most recent 10 out of 52 publications