We have studied DNA repair in individual primary rat neurons. These neurons repair many kinds of DNA damage, and it is particularly novel that they repair UV induced DNA damage. This is important because UV damage to DNA is removed by the DNA repair process called nucleotide excision repair, which is generally thought to be deficient in the CNS. We also find attenuation of oxidative DNA damage repair in differentiating neurons and we find that the DNA repair in the synaptic region is quite robust after oxidative stress. Furthermore, there seems to be a connection between neurotransmission and DNA repair because the addition of neurotransmitters to neurons increases DNA damage and repair. Specifically, we observed that at non-toxic physiological levels of glutamate, it induced DNA damage and this damage was dependent upon calcium and mitochondrial ROS because calcium chelators and mitochondrial inhibitors prevented the DNA damage. We further showed that the glutamate-induced DNA damage induced APE1 mRNA and that APE1 is a key player in the repair of glutamate-induced DNA damage. The APE1 induction was shown to be dependent on signaling through a calcium and CREB-mediated pathway. Given that glutamate is the most abundant neurotransmitter, this raises the notion that there exists a connection between DNA repair, memory and learning.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000723-03
Application #
8148297
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2010
Total Cost
$190,134
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Hou, Yujun; Lautrup, Sofie; Cordonnier, Stephanie et al. (2018) NAD+ supplementation normalizes key Alzheimer's features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc Natl Acad Sci U S A 115:E1876-E1885
Baptiste, Beverly A; Katchur, Steven R; Fivenson, Elayne M et al. (2018) Enhanced mitochondrial DNA repair of the common disease-associated variant, Ser326Cys, of hOGG1 through small molecule intervention. Free Radic Biol Med 124:149-162
Fang, Evandro F; Lautrup, Sofie; Hou, Yujun et al. (2017) NAD+ in Aging: Molecular Mechanisms and Translational Implications. Trends Mol Med 23:899-916
Fang, Evandro F; Bohr, Vilhelm A (2017) NAD(+): The convergence of DNA repair and mitophagy. Autophagy 13:442-443
Croteau, Deborah L; Fang, Evandro Fei; Nilsen, Hilde et al. (2017) NAD(+) in DNA repair and mitochondrial maintenance. Cell Cycle 16:491-492
Misiak, Magdalena; Vergara Greeno, Rebeca; Baptiste, Beverly A et al. (2017) DNA polymerase ? decrement triggers death of olfactory bulb cells and impairs olfaction in a mouse model of Alzheimer's disease. Aging Cell 16:162-172
Hou, Yujun; Song, Hyundong; Croteau, Deborah L et al. (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161:83-94
Karikkineth, Ajoy C; Scheibye-Knudsen, Morten; Fivenson, Elayne et al. (2017) Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res Rev 33:3-17
Hegde, Muralidhar L; Bohr, Vilhelm A; Mitra, Sankar (2017) DNA damage responses in central nervous system and age-associated neurodegeneration. Mech Ageing Dev 161:1-3
Fivenson, Elayne M; Lautrup, Sofie; Sun, Nuo et al. (2017) Mitophagy in neurodegeneration and aging. Neurochem Int 109:202-209

Showing the most recent 10 out of 56 publications