Oxidative lesions are removed from DNA primarily via the base excision repair (BER) pathway. BER is carried out through four enzymatic steps, but it is now clear that several other proteins modulate BER efficiency through protein-protein interactions and posttranslational modifications. We and others identified several protein interactions for the core BER enzymes. Oxidative DNA damage is implicated in brain aging, neurodegeneration and neurological diseases. Damage can be created by normal cellular metabolism, which accumulates with age, or by acute cellular stress conditions, which create bursts of oxidative damage. Thus we are exploring mechanisms to stimulate DNA repair pathways since we believe elevated DNA repair capacity may thwart cell death and improve cellular metabolism and could limit age associated degeneration. Brain cells have particularly high basal levels of metabolic activity and use oxidative damage repair mechanisms to remove oxidative damage from DNA and dNTP pools and nevertheless DNA damage accrues with normal aging. Accumulating DNA damage and loss of robust DNA repair pathways with age may contribute to neurological dysfunction. In part, neurodegeneration may arise in individuals that lack BER DNA repair because in non-proliferating cells it is essential and disruption of these processes impact mitochondrial fitness which in turn compromises cellular energetics and cell survival. Recently, we found that loss of DNA glycosylase endonuclease 8-like 1 (NEIL1) in mice causes deficits in spatial memory retention. Furthermore, we found that there is a significant loss of NEIL1 enzyme levels and its activity in postmortem Alzheimer's disease brains. Interestingly, the expression levels of Neil1 messenger RNA are higher in the olfactory bulb compared with other areas of the brain. Olfaction in mice is a central brain function that involves many central nervous system pathways. Thus, we studied the effect of complete loss of Neil1 gene on olfactory function. We explored olfactory function in mice with 3 different behavioral tests namely, olfactory sensitivity, performance, and buried food tests. Neil1 KO mice performed poorly compared with wild-type mice in all 3 tests. Our data indicate that loss of Neil1 causes olfactory function deficits supporting our previous findings and that normal brain function requires robust DNA repair. Changes in olfactory are often seen early in the development of AD and other neurodegenerative conditions, therefore we are pursuing whether our other DNA repair deficient mouse model also possess olfactory functional deficits. Elucidation of mechanism that contributes to olfactory degeneration may have particular relevance for many neurodegenerative diseases including Alzheimer's and Parkinson's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000727-24
Application #
9349272
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
24
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Fang, Evandro Fei; Froetscher, Lynn; Scheibye-Knudsen, Morten et al. (2018) Emerging antitumor activities of the bitter melon (Momordica charantia). Curr Protein Pept Sci :
Baptiste, Beverly A; Katchur, Steven R; Fivenson, Elayne M et al. (2018) Enhanced mitochondrial DNA repair of the common disease-associated variant, Ser326Cys, of hOGG1 through small molecule intervention. Free Radic Biol Med 124:149-162
Rahnasto-Rilla, Minna K; McLoughlin, Padraig; Kulikowicz, Tomasz et al. (2017) The Identification of a SIRT6 Activator from Brown Algae Fucus distichus. Mar Drugs 15:
Fang, Evandro F; Bohr, Vilhelm A (2017) NAD(+): The convergence of DNA repair and mitophagy. Autophagy 13:442-443
Fakouri, Nima Borhan; Durhuus, Jon Ambæk; Regnell, Christine Elisabeth et al. (2017) Rev1 contributes to proper mitochondrial function via the PARP-NAD+-SIRT1-PGC1? axis. Sci Rep 7:12480
Hou, Yujun; Song, Hyundong; Croteau, Deborah L et al. (2017) Genome instability in Alzheimer disease. Mech Ageing Dev 161:83-94
Karikkineth, Ajoy C; Scheibye-Knudsen, Morten; Fivenson, Elayne et al. (2017) Cockayne syndrome: Clinical features, model systems and pathways. Ageing Res Rev 33:3-17
Cheng, Aiwu; Yang, Ying; Zhou, Ye et al. (2016) Mitochondrial SIRT3 Mediates Adaptive Responses of Neurons to Exercise and Metabolic and Excitatory Challenges. Cell Metab 23:128-42
Fang, Evandro Fei; Scheibye-Knudsen, Morten; Chua, Katrin F et al. (2016) Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 17:308-21
Mitchell, Sarah J; Madrigal-Matute, Julio; Scheibye-Knudsen, Morten et al. (2016) Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab 23:1093-1112

Showing the most recent 10 out of 78 publications