Leucine rich repeat kinase 2 (LRRK2) mutations are causal for inherited Parkinsons disease with age-dependent penetrance. The protein is a large complex kinase with several reported protein interactions and mutliple proposed functions. Some mutations increase kinase activity, and the overall aim of this project is to extend our prior observations that kinase activity of LRRK2 is important in pathogenesis association with mutations in this gene. In the past reporting period, we have spent some time characterizing highly purified LRRK2 protein, and the related homolog LRRK1. We find that both proteins form dimers, which we had previously suggested but has been controversial. One possibility, which we are pursuing, is that there are protein binding partners and/or conformational states of LRRK2 that prevent this from happening within cells. We were also able to confirm our previous observations with partially purified material, that the Parkinson's disease associated LRRK2 protein is a more active kinase than the homolog LRRK1. The significance of this observation is not yet clear. We have also characterized a risk factor variant for LRRK2, G2385R, which we found surprisingly has lower kinase activity than wild type protein. The likely mechanism is that G2385R alters intramolecular interactions within the large, complex protein. This work may have implications for the types of therapeutics that should be developed for LRRK2-related disease.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIAAG000948-05
Application #
8552524
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2012
Total Cost
$649,605
Indirect Cost
Name
National Institute on Aging
Department
Type
DUNS #
City
State
Country
Zip Code
Blauwendraat, Cornelis; Reed, Xylena; Kia, Demis A et al. (2018) Frequency of Loss of Function Variants in LRRK2 in Parkinson Disease. JAMA Neurol :
Kluss, Jillian H; Conti, Melissa M; Kaganovich, Alice et al. (2018) Detection of endogenous S1292 LRRK2 autophosphorylation in mouse tissue as a readout for kinase activity. NPJ Parkinsons Dis 4:13
Mamais, Adamantios; Manzoni, Claudia; Nazish, Iqra et al. (2018) Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy Body pathology. Brain Res :
Price, Alice; Manzoni, Claudia; Cookson, Mark R et al. (2018) The LRRK2 signalling system. Cell Tissue Res 373:39-50
Madero-Pérez, Jesús; Fdez, Elena; Fernández, Belén et al. (2018) Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation. Mol Neurodegener 13:3
Rudenko, Iakov N; Kaganovich, Alice; Langston, Rebekah G et al. (2017) The G2385R risk factor for Parkinson's disease enhances CHIP-dependent intracellular degradation of LRRK2. Biochem J 474:1547-1558
Civiero, Laura; Cogo, Susanna; Kiekens, Anneleen et al. (2017) PAK6 Phosphorylates 14-3-3? to Regulate Steady State Phosphorylation of LRRK2. Front Mol Neurosci 10:417
Robak, Laurie A; Jansen, Iris E; van Rooij, Jeroen et al. (2017) Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease. Brain 140:3191-3203
Liu, Weiwei; Liu, Xia'nan; Li, Yu et al. (2017) LRRK2 promotes the activation of NLRC4 inflammasome during Salmonella Typhimurium infection. J Exp Med 214:3051-3066
Beilina, Alexandra; Cookson, Mark R (2016) Genes associated with Parkinson's disease: regulation of autophagy and beyond. J Neurochem 139 Suppl 1:91-107

Showing the most recent 10 out of 34 publications