Predictors and biomarkers of Alzheimer's Disease (AD) and other neurodegenerative diseases In collaboration with Dr. Ed Goetzl from UCSF and other investigators, we developed a methodology for isolating blood exosomes and enriching them for neuronal origin by immunoprecipitation using neuronal surface markers NCAM and L1 CAM. To date, we have conducted several case control studies measuring exosomal Ab, tau, Ser and Tyr phosphorylated IRS-1, synaptic markers, and other proteins, in AD and control subjects. We found highly significant differences that, for some proteins, accurately discriminate between the two groups. In addition, exosomal differences may be present at the preclinical stage and may predict AD. I published several manuscript on the topic (in the journals Alzheimer's and Dementia, FASEB J (four times), Neurology, Annals of Clinical and Translational Neurology, Frontiers in Neuroscience, and WIRES RNA. One major goal for the coming year is to validate exosomal markers as diagnostic and prognostic biomarkers of AD in large cohorts from the Baltimore Longitudinal Study of Aging (BLSA), The Harvard Aging Brain Study, and the WRAP (Wisconsin). The BLSA, Harvard Aging Brain Study, and WRAP are ideal to assess longitudinal changes in these markers and their potential to predict AD at the preclinical stage, disease progression and conversion from MCI to AD. In addition to a main focus on AD, I am conducting exosome biomarker studies in Parkinson's disease, Multiple Systems Atrophy, and Multiple Sclerosis. In collaboration with the NIA 3T MRI Facility manager, Dr. David Reiter, I have employed a novel Magnetic Resonance Spectroscopy (MRS) methodology at the NIA 3T MRI facility, which allows us to obtain in vivo measures on brain metabolites (glucose, lactate) and neurotransmitters (glutamate and GABA), which are relevant to AD pathogenesis. First, I conducted a study of healthy volunteers combining MRS with resting fMRI, which provides measures of brain functional connectivity, and showed a link between neurotransmitter levels and brain connectivity. The study was pubmished in Neuroimage. In a case-control study of patients with MCI/AD and healthy volunteers, we show higher glucose and lactate, and lower glutamate and GABA in patients compared to controls, suggesting that these MRS markers may be used as diagnostic biomarkers for AD. The manuscript is currently under review. In collaboration with Dr. Mohamad El Haj from University of Lille, France, we conducted three studies on autobiographical generation of past and future events in a cohort of AD patients compared to controls. We found that future and past events are more similar in patients compared to controls and that the ability to generate future events is closely related with the patient's episodic memory. In addition, the ability to generate future events was associated with Frontal Lobe functions. These findings suggest that remembering the past and imagining the future rely on common brain structures, which are both impaired in AD. In addition, we published a systematic review of hallucinations in AD and a review on time distortions in AD. Treatment studies in AD I completed a pilot Phase II, double blind, randomized, placebo-controlled, clinical trial to assess the safety and tolerability of exendin-4 (exenatide) treatment in participants with Mild Cognitive Impairment (MCI)/early AD. A total of 57 participants were accrued in this study (i.e. signed informed consent), twenty-seven (27) participants received the experimental drug (exenatide or placebo), and 18 completed the study. Participants received study drug for 18 months and outcome measures were collected every six months. My goal for the new year is to complete data analysis and publish the results. I continue to conduct a Phase I, double-blind, placebo-controlled, ascending, single-dose, safety, tolerability and pharmacokinetic study of Bisnorcymserine, a selective butyrylcholinesterase inhibitor, in healthy volunteers. Inhibition of butyrylcholinesterase is a novel therapeutic approach for symptomatic treatment in moderate/advanced AD. Finally, I am conducting a study of Intermittent caloric restriction (ICR)implementing 5-2 CR (alternating 5 days of regular calorie intake and 2 days of CR). This is a 8-week study of 5-2 CR in overweight middle aged subjects to assess potential beneficial effects on insulin resistance, metabolism, cognitive performance, fMRI activity and biomarkers. If this study is positive, ICR may be a candidate intervention for primary prevention of AD at midlife.
Showing the most recent 10 out of 52 publications