Mouse leukemia viruses (MLVs) are gammaretroviruses linked to induction of neoplasms, and neurological and immunodeficiency diseases. Inbred strains of laboratory mice and wild mouse species differ in their susceptibility to mouse gammaretrovirus infection and to virus-induced diseases, and they also differ in the types of MLVs that they carry. Susceptibility differences are due to variations in specific host genes, and we have been engaged in an ongoing effort to identify and characterize several host genes that are either involved in virus resistance or that contribute to the disease process. There are two types of host genes involved in virus-induced disease. First, the mouse genome contains copies of mouse gammaretrovirus genomes, many of which can produce infectious and pathogenic viruses. Second, there are also host factors that interfere directly with virus infection and replication, and we are particularly interested in those factors that inhibit virus entry and the early post-entry stages of the virus replicative cycle. At the level of entry, resistance can be caused by polymorphisms in the cell surface receptors. After the gammaretrovirus enters the receptive cell, reverse transcription and translocation to the nucleus can be inhibited or altered by virus resistance factors Fv1, mApobec3/Rfv3, and TRIM5alpha. Our current aim is to characterize these active endogenous retroviruses and the host encoded resistance factors and their viral targets. The ultimate goal is to define the origin and extent of antiviral activity in Mus evolution, and elucidate the responsible mechanisms. This work relies heavily on wild mice because laboratory strains provide only a limited sampling of the genetic diversity in Mus. Also, wild mouse species allow us to examine survival strategies in natural populations that harbor virus and to follow the evolution of the resistance genes. These mice additionally provide a source of novel resistance genes and virus variants. One set of projects aims to identify viral and cell receptor determinants responsible for virus binding and entry. We are currently working on the XPR1 receptor for the xenotropic/polytropic MLVs (XP-MLVs). We have determined that, in mouse populations exposed to infectious virus, virus resistance is mediated by polymorphisms of the cell surface receptor. We have identified a total of six XPR1 susceptibility variants in wild mice and described the geographic and species distribution of these Mus Xpr1 variants. Five of these receptors restrict entry by two or more of the virus host range variants that rely on XPR1, and all of these receptors evolved in populations exposed to X-MLVs. Virtually all mammalian species can be infected by X-MLVs, despite substantial sequence variation in the cell surface receptor they use for entry, XPR1. To determine why escape variants are rare in mammals, we examined the evolution of the entry determinants in XPR1, which lie in its third and fourth putative extracellular loops (ECLs). The critical ECL3 receptor determinant overlies a splice donor site and is evolutionarily conserved in vertegrate XPR1 genes. The 13 residue ECL4 is hypervariable, but this variability does not abolish receptor function, even when the entire ECL is replaced by the corresponding segment of the jellyfish gene. Deletions along the length of this ECL can influence but not abolish receptor function, and different deletions affect different XP-MLVs. Thus, receptor usage of a constrained splice site and a loop that tolerates mutations limits the likelihood of host escape mutations. In another series of experiments, we used phylogenetic and molecular biological methods to identify the wild mouse origins of the endogenous XP-MLVs found in the sequenced C57BL mouse genome. We traced 12 X-MLVs to Asian mouse species, but failed to identify any of the P-MLV endogenous retroviruses (ERVs) in any wild mice. We are now looking at the ability of these ERVs to generate infectious virus. We are in the process of sequencing 25 well characterized virus isolates, 7 of which are naturally occurring MLVs isolated from geographically separated Mus musculus subspecies, and 18 are isolates from virus-induced tumors. All of the 18 represent de novo recombinants of ecotropic MLVs (E-MLVs) and nonecotropic ERVs. These viruses fall into two groups: leukomogenic and nonleukemogenic. The isolates that do not cause leukemogenesis in inoculated neonates result from recombination of P-MLVs and E-MLVs. The leukemogenic isolates, however, are recombinants of E-MLVs, P-MLVs and X-MLVs. These two phenotypically distinct viruses differ from one another in a segment of the transmembrane subunit of the virus envelope gene. We have also characterized 7 viruses from wild mouse species to document the evolutionary history of these viruses in natural populations and to determine their origins. Analysis of these viruses show evidence of coevolution with specific host restriction factors as demonstrated by temporal and geographic distribution of polymorphisms at the virus sites that interact with host factors during replication.

Project Start
Project End
Budget Start
Budget End
Support Year
34
Fiscal Year
2015
Total Cost
Indirect Cost
Name
Niaid Extramural Activities
Department
Type
DUNS #
City
State
Country
Zip Code
Bamunusinghe, Devinka; Skorski, Matthew; Buckler-White, Alicia et al. (2018) Xenotropic Mouse Gammaretroviruses Isolated from Pre-Leukemic Tissues Include a Recombinant. Viruses 10:
Boso, Guney; Buckler-White, Alicia; Kozak, Christine A (2018) Ancient evolutionary origin and positive selection of the retroviral restriction factor Fv1 in muroid rodents. J Virol :
Bamunusinghe, Devinka; Liu, Qingping; Plishka, Ronald et al. (2017) Recombinant Origins of Pathogenic and Nonpathogenic Mouse Gammaretroviruses with Polytropic Host Range. J Virol 91:
Bamunusinghe, Devinka; Naghashfar, Zohreh; Buckler-White, Alicia et al. (2016) Sequence Diversity, Intersubgroup Relationships, and Origins of the Mouse Leukemia Gammaretroviruses of Laboratory and Wild Mice. J Virol 90:4186-98
Liu, Qingping; Yan, Yuhe; Kozak, Christine A (2016) Permissive XPR1 gammaretrovirus receptors in four mammalian species are functionally distinct in interference tests. Virology 497:53-58
Kozak, Christine A (2015) Origins of the endogenous and infectious laboratory mouse gammaretroviruses. Viruses 7:1-26
Triviai, Ioanna; Ziegler, Marion; Bergholz, Ulla et al. (2014) Endogenous retrovirus induces leukemia in a xenograft mouse model for primary myelofibrosis. Proc Natl Acad Sci U S A 111:8595-600
Lu, Xiaoyu; Martin, Carrie; Bouchard, Christelle et al. (2014) Escape variants of the XPR1 gammaretrovirus receptor are rare due to reliance on a splice donor site and a short hypervariable loop. Virology 468-470:63-71
Martin, Carrie; Buckler-White, Alicia; Wollenberg, Kurt et al. (2013) The Avian XPR1 Gammaretrovirus Receptor Is under Positive Selection and Is Disabled in Bird Species in Contact with Virus-Infected Wild Mice. J Virol 87:10094-104
Kozak, Christine A (2013) Evolution of different antiviral strategies in wild mouse populations exposed to different gammaretroviruses. Curr Opin Virol 3:657-63

Showing the most recent 10 out of 25 publications