The accomplishments from the two main projects of the section are: 1) Structure and function of the salivary protein LJM11, a protein from the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection. LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect yellow family of proteins. We demonstrated that DNA immunization with LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed-type hypersensitivity (DTH) response following exposure to Lu. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN- upon stimulation with LJM11 demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from Lu. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. Both LJM11 and LJM111 acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed -propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket while LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins. 2) Successful use in field conditions of two sand fly salivary recombinant proteins (LJM17 and LJM11) as markers of sand fly exposure. We have previously shown that two sand fly salivary proteins (LJM17 and LJM11) induce the production of anti-saliva antibodies, which can then be used as markers for insect (vector) biting or exposure. Epidemiological studies using sand fly salivary gland sonicate as antigens are hampered by the difficulty of obtaining large amounts of salivary glands. We investigated the use of the salivary recombinant proteins LJM17 and LJM11 as an alternative method for screening of exposure to the sand fly. We primarily tested the suitability of using the recombinant proteins to estimate positive anti-saliva ELISA test in small sets of serum samples. Further, we validated the assay in a large sample of 1,077 individuals from an epidemiological survey in a second area endemic for visceral leishmaniasis. Our findings indicate that these proteins represent a promising epidemiological tool that can aid in implementing control measures against leishmaniasis, a vector-borne neglected disease. 3) Seasonality and incrimination of Phlebotomus duboscqi as the vector of Leishmania major infection in two neighboring villages in central Mali. Phlebotomus duboscqi is the principle vector of Leishmania major, the causative agent of cutaneous leishmaniasis (CL), in West Africa and is the suspected vector in Mali. Although found throughout the country the seasonality and infection prevalence of P. duboscqi has not been established in Mali. We conducted a three year study in two neighboring villages, Kemena and Sougoula, in Central Mali, an area with a leishmanin skin test positivity of up to 45%. During the first year, we evaluated the overall diversity of sand flies. Of 18,595 flies collected, 12,952 (69%) belonged to 12 species of Sergentomyia and 5,643 (31%) to two species of the genus Phlebotomus, P. duboscqi and P. rodhaini. Of those, P. duboscqi was the most abundant, representing 99% of the collected Phlebotomus species. P. duboscqi was the primary sand fly collected inside dwellings, mostly by resting site collection. The seasonality and infection prevalence of P. duboscqi was monitored over two consecutive years. P. dubsocqi were collected throughout the year. Using a quasi-Poisson model we observed a significant annual (year 1 to year 2), seasonal (monthly) and village effect (Kemena versus Sougoula) on the number of collected P. duboscqi. The significant seasonal effect of the quasi-Poisson model reflects two seasonal collection peaks in May-July and October-November. The infection status of pooled P. duboscqi females was determined by PCR. The infection prevalence of pooled females, estimated using the maximum likelihood estimate of prevalence, was 2.7% in Kemena and Sougoula. Based on the PCR product size, L. major was identified as the only species found in flies from the two villages. This was confirmed by sequence alignment of a subset of PCR products from infected flies to known Leishmania species, incriminating P. duboscqi as the vector of CL in Mali. 4) Characterization of midgut proteins from the sand fly Phlebotomus perniciosus, a vector for Leishmania infantum Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. We sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that L. infantum infection can reduce the transcript abundance of trypsin PperTryp3 in the midgut of P. perniciosus.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Serafim, Tiago D; Coutinho-Abreu, Iliano V; Oliveira, Fabiano et al. (2018) Sequential blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector infectivity. Nat Microbiol 3:548-555
Sangare, Moussa Brema; Coulibaly, Yaya Ibrahim; Coulibaly, Siaka Yamoussa et al. (2018) A cross-sectional study of the filarial and Leishmania co-endemicity in two ecologically distinct settings in Mali. Parasit Vectors 11:18
Cunha, Jurema M; Abbehusen, Melissa; Suarez, Martha et al. (2018) Immunization with LJM11 salivary protein protects against infection with Leishmania braziliensis in the presence of Lutzomyia longipalpis saliva. Acta Trop 177:164-170
Mendes-Sousa, Antonio Ferreira; Vale, Vladimir Fazito; Queiroz, Daniel Costa et al. (2018) Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis. Insect Biochem Mol Biol 92:12-20
Martin-Martin, Ines; Chagas, Andrezza Campos; Guimaraes-Costa, Anderson B et al. (2018) Immunity to LuloHya and Lundep, the salivary spreading factors from Lutzomyia longipalpis, protects against Leishmania major infection. PLoS Pathog 14:e1007006
Canepa, Gaspar E; Molina-Cruz, Alvaro; Yenkoidiok-Douti, Lampouguin et al. (2018) Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines 3:26
Tlili, Aymen; Marzouki, Soumaya; Chabaane, Emna et al. (2018) Phlebotomus papatasi Yellow-Related and Apyrase Salivary Proteins Are Candidates for Vaccination against Human Cutaneous Leishmaniasis. J Invest Dermatol 138:598-606
Manning, Jessica E; Morens, David M; Kamhawi, Shaden et al. (2018) Mosquito Saliva: The Hope for a Universal Arbovirus Vaccine? J Infect Dis 218:7-15
Coulibaly, Cheick Amadou; Traore, Bourama; Dicko, Adama et al. (2018) Impact of insecticide-treated bednets and indoor residual spraying in controlling populations of Phlebotomus duboscqi, the vector of Leishmania major in Central Mali. Parasit Vectors 11:345
Valenzuela, Jesus G; Aksoy, Serap (2018) Impact of vector biology research on old and emerging neglected tropical diseases. PLoS Negl Trop Dis 12:e0006365

Showing the most recent 10 out of 104 publications