The protozoan parasite Toxoplasma gondii infects all nucleated cells and establishes life-long chronic infections in virtually any warm-blooded vertebrate. Eliminating the ability of this parasite to establish chronic infections in humans and animals is central to controlling its pathogenesis, however, there is currently no human vaccine or drug capable of doing this. Our lab has identified a large superfamily of >160 SRS protein adhesins that are essential for 1) entry into host cells and 2) regulating host immunity in order to establish chronic infections. The SRS proteins are regulated in a development-specific manner, and we showed by gene-knockout studies that four of these antigens expressed by the tachyzoite stage are critical virulence factors: SAG1, SAG2, SRS2 and SAG3. SAG3 is a pivotal adhesin required for establishing infection, whereas SAG1, SAG2 and SRS2 are primarily immunomodulating factors that elicit strong immunity in all infected hosts. Our work with SRS2 identified that the majority of mouse virulent Toxoplasma strains poorly express SRS2, whereas all avirulent strains highly express SRS2. We tested whether the expression level of SRS2 was sufficient to alter the mouse virulence phenotype. When SRS2 was expressed transgenically in a virulent strain at levels equivalent to those found in avirulent strains, the transgenic strains were no longer virulent. These data suggest that SRS2 is a pivotal virulence factor and that expression level is a critical determinant governing the outcome of infection. Understanding the structural basis and cellular receptor for host cell entry within this superfamily of SRS antigens, and the type of immunity induced during natural infections should lay the foundation for therapeutic interventions, either prophylactic or vaccine-based, to limit infectivity and induce sterilizing immunity against this widespread zoonotic pathogen.

Project Start
Project End
Budget Start
Budget End
Support Year
3
Fiscal Year
2009
Total Cost
$589,615
Indirect Cost
City
State
Country
Zip Code
Opintan, Japheth A; Awadzi, Benedict K; Biney, Isaac J K et al. (2017) High rates of cerebral toxoplasmosis in HIV patients presenting with meningitis in Accra, Ghana. Trans R Soc Trop Med Hyg 111:464-471
Khan, Asis; Grigg, Michael E (2017) Toxoplasma gondii: Laboratory Maintenance and Growth. Curr Protoc Microbiol 44:20C.1.1-20C.1.17
Zhang, Javi; Khan, Asis; Kennard, Andrea et al. (2017) PopNet: A Markov Clustering Approach to Study Population Genetic Structure. Mol Biol Evol 34:1799-1811
Verma, Shiv K; Sweeny, Amy R; Lovallo, Matthew J et al. (2017) Seroprevalence, isolation and co-infection of multiple Toxoplasma gondii strains in individual bobcats (Lynx rufus) from Mississippi, USA. Int J Parasitol 47:297-303
Commodaro, Alessandra G; Chiasson, Melissa; Sundar, Natarajan et al. (2016) Elevated Toxoplasma gondii Infection Rates for Retinas from Eye Banks, Southern Brazil. Emerg Infect Dis 22:691-3
Ochiai, Eri; Sa, Qila; Perkins, Sara et al. (2016) CD8(+) T cells remove cysts of Toxoplasma gondii from the brain mostly by recognizing epitopes commonly expressed by or cross-reactive between type II and type III strains of the parasite. Microbes Infect 18:517-22
Pszenny, Viviana; Ehrenman, Karen; Romano, Julia D et al. (2016) A Lipolytic Lecithin:Cholesterol Acyltransferase Secreted by Toxoplasma Facilitates Parasite Replication and Egress. J Biol Chem 291:3725-46
Hutson, Samuel L; Wheeler, Kelsey M; McLone, David et al. (2015) Patterns of Hydrocephalus Caused by Congenital Toxoplasma gondii Infection Associate With Parasite Genetics. Clin Infect Dis 61:1831-4
Miller, Catherine M; Zakrzewski, Alana M; Robinson, Dionne P et al. (2015) Lack of a Functioning P2X7 Receptor Leads to Increased Susceptibility to Toxoplasmic Ileitis. PLoS One 10:e0129048
Contopoulos-Ioannidis, Despina; Wheeler, Kelsey M; Ramirez, Raymund et al. (2015) Clustering of Toxoplasma gondii Infections Within Families of Congenitally Infected Infants. Clin Infect Dis 61:1815-24

Showing the most recent 10 out of 32 publications