Overexpression of the serine/threonine polo-like kinase 1 (Plk1) is tightly associated with oncogenesis in several human cancers. Interference with Plk1 function induces apoptosis in tumor cells but not in normal cells. Accordingly, Plk1 is a potentially attractive anticancer chemotherapeutic target. Plk1 possesses a unique phosphopeptide-binding polo box domain (PBD), which functions by recognizing and binding to to phosphothreonine (pT)/phosphoserine (pS)-containing protein sequences. This recognition and binding is essential for intracellular localization and mitotic functions of Plk1. Unlike kinase domains, PBDs are only found among the Plks. Therefore, PBDs represent attractive targets for selectively down-regulating Plk function. We have been engaged in efforts to develop Plk1 PBD-binding inhibitors starting from the 5-mer phosphopeptide PLHSpT. We have previously identified peptidic inhibitors that showed from 1000- to more than 10,000-fold improved PBD-binding affinity. In collaboration with Dr. Michael Yaffe (MIT), X-ray co-crystal structures of these peptides bound to Plk1 PBD indicated unanticipated modes of binding that take advantage of a cryptic binding channel that is not present in the non-liganded PBD or engaged by the parent pentamer phosphopeptide. However, critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pT/pS-residues within the binding sequences. Yet, the use of pT residues in therapeutics is potentially limited by hydrolytic lability of their phosphate groups to cellular phosphatases. Therefore, we developed a series of phosphatase-stable pT mimetics and found that when we incorporated these into peptides, that certain of the resulting peptides retained PBD-binding affinities, which In the best case, equaled the parent pT-containing peptides. Most recently, we have developed new, modified phosphatase pT-mimetics and incorporated them into peptides and found that we can achieve significantly higher PBD-binding affinities than the parent pT-containing peptides. In separate work, we have been able to optimize ligand interactions within the cryptic binding pocket and in so doing, achieve several-fold enhancement in PBD-binding affinities. We have also explored the application of conformational constraint (in which binding entropy penalties are reduced by reducing ligand flexibility). We synthesized several several macrocyclic peptides and some of these exhibit reduced overall anionic charge relative to the parent pT-containing peptides, while showing improved binding affinities. Work continues, with an objective to achieve PBD-binding inhibitors that exhibit potent effects in whole cell systems. In further work we are developing proteins that merge properties of antibodies with biologically active small molecules. This work is being done in collaboration with Dr. Christoph Rader (Scripps Florida). One aspect of our approach employs monoclonal antibodies and antibody Fc fragments harboring a single C-terminal selenocysteine residue (Fc-Sec) as well as catalytic antibodies, which can be selectively covalently modified by azetidinone and beta-diketone-containing drug payloads. The resulting antibody drug conjugates (ADCs) are directed against a variety of targets by changing the peptide or small molecule to which they are conjugated.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC006198-27
Application #
9343541
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
27
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Li, Xiuling; Nelson, Christopher G; Nair, Rajesh R et al. (2017) Stable and Potent Selenomab-Drug Conjugates. Cell Chem Biol 24:433-442.e6
Hymel, David; Burke Jr, Terrence R (2017) Corrigendum: Phosphatase-Stable Phosphoamino Acid Mimetics That Enhance Binding Affinities with the Polo-Box Domain of Polo-like Kinase?1. ChemMedChem 12:278
Zhao, Xue Zhi; Hymel, David; Burke Jr, Terrence R (2017) Enhancing polo-like kinase 1 selectivity of polo-box domain-binding peptides. Bioorg Med Chem 25:5041-5049
Hymel, David; Burke Jr, Terrence R (2017) Phosphatase-Stable Phosphoamino Acid Mimetics That Enhance Binding Affinities with the Polo-Box Domain of Polo-like Kinase?1. ChemMedChem 12:202-206
Nanna, Alex R; Li, Xiuling; Walseng, Even et al. (2017) Harnessing a catalytic lysine residue for the one-step preparation of homogeneous antibody-drug conjugates. Nat Commun 8:1112
Zhao, Xue Zhi; Hymel, David; Burke Jr, Terrence R (2016) Application of oxime-diversification to optimize ligand interactions within a cryptic pocket of the polo-like kinase 1 polo-box domain. Bioorg Med Chem Lett 26:5009-5012
Walseng, Even; Nelson, Christopher G; Qi, Junpeng et al. (2016) Chemically Programmed Bispecific Antibodies in Diabody Format. J Biol Chem 291:19661-73
Qian, Wen-Jian; Burke Jr, Terrence R (2015) Mitsunobu mischief: neighbor-directed histidine N(?)-alkylation provides access to peptides containing selectively functionalized imidazolium heterocycles. Org Biomol Chem 13:4221-5
Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert et al. (2015) Neighbor-directed histidine N (?)-alkylation: A route to imidazolium-containing phosphopeptide macrocycles. Biopolymers 104:663-73
Vire, Bérengère; Skarzynski, Martin; Thomas, Joshua D et al. (2014) Harnessing the fc? receptor for potent and selective cytotoxic therapy of chronic lymphocytic leukemia. Cancer Res 74:7510-7520

Showing the most recent 10 out of 48 publications