ADP-ribosylation factors (Arfs) are members of the Ras superfamily that coordinated membrane and actin remodeling, which integral to a number of cellular functions, including cell movement, endocytosis and exocytosis, and mitosis and are central to pathological processes such as tumor cell invasion and metastasis. In our studies of the regulation of Arfs, we discovered the Arf GTPase-activating proteins (GAPs), which facilitate the hydrolysis of GTP bound to Arf, converting Arf-GTP to Arf-GDP. The first GAP we discovered, ASAP1, is composed of a BAR, PH, Arf GAP, Ankyrin repeat, proline rich, E/DLPPKP repeat and SH3 domains. It regulates remodeling of the actin cytoskeleton and associated focal adhesions. Consistent with these biochemical activities, it has been implicated in regulating differentiation and has also been implicated as a regulator of cancer cell behaviors, including invasion and metastasis. Furthermore, ASAP1 is overexpressed in a number of cancers, including childhood rhabdomyosarcomas and overexpression correlates with poor prognosis in a number of cancers, which has motivated our recent focus on ASAP1. We study three aspects of ASAP1 biochemistry and biology, with progress in all three areas in the past year. First, we are working towards determining the mechanism of regulated catalysis by the Arf GAP domain. In the past year, we have discovered that the PH domain is an integral part of the catalytic pocket, necessary for function of the Arf GAP domain and, in collaboration with Dr. R. Andrew Byrd, have discovered that the PH domain binds directly to an N-terminal extension of the substrate Arf-GTP. We are currently extending the work to define mechanism at atomic resolution. In the second area of study, we are examining the link between oncoproteins to which ASAP1 binds and the actin remodeling that it mediates. In the past year, we have discovered direct binding of the BAR and PH domain of ASAP1 to F-actin, which drives bundling of the F-actin. In ongoing studies, we are determining the contribution to ASAP1-driven actin bundling to remodeling of actin in stress fibers, invadopodia and circular dorsal ruffles. In a third area of work in collaboration with Dr. Marielle Yohe of Pediatric Oncology Branch, we are examining the contribution of ASAP1 to the behavior of fusion-negative rhabdomyosarcoma (FN-RMS), an ideal model for the function of ASAP1 in cancer cells. First, as for other cancer, ASAP1 is overexpressed. Second, while ASAP1 has been found to affect both differentiation of nontransformed cells and proliferation of cancer cells, FN-RMS has a defect in differentiation of myoblasts. In the past year, we have discovered that ASAP1 regulates differentiation pathways in both myoblasts and RMS cell lines and that there are differences in effects on myoblasts and FN-RMS. In ongoing studies, we are examining how these differences affect differentiation, proliferation, invasion and metastasis.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC007365-25
Application #
10014292
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
25
Fiscal Year
2019
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Luo, Ruibai; Chen, Pei-Wen; Kuo, Jean-Cheng et al. (2018) ARAP2 inhibits Akt independently of its effects on focal adhesions. Biol Cell 110:257-270
Luo, Ruibai; Reed, Christine E; Sload, Jeffrey A et al. (2017) Arf GAPs and molecular motors. Small GTPases :1-14
Vitali, Teresa; Girald-Berlingeri, Sofia; Randazzo, Paul A et al. (2017) Arf GAPs: A family of proteins with disparate functions that converge on a common structure, the integrin adhesion complex. Small GTPases :1-9
Chen, Pei-Wen; Jian, Xiaoying; Luo, Ruibai et al. (2015) Simple in vitro assay of Arf GAPs and preparation of Arf proteins as substrates. Methods Cell Biol 130:69-80
Lo, I-Chung; Gupta, Vijay; Midde, Krishna K et al. (2015) Activation of G?i at the Golgi by GIV/Girdin imposes finiteness in Arf1 signaling. Dev Cell 33:189-203
Shiba, Yoko; Randazzo, Paul A (2014) ArfGAPs: key regulators for receptor sorting. Receptors Clin Investig 1:e158
Chen, Pei-Wen; Luo, Ruibai; Jian, Xiaoying et al. (2014) The Arf6 GTPase-activating proteins ARAP2 and ACAP1 define distinct endosomal compartments that regulate integrin ?5?1 traffic. J Biol Chem 289:30237-48
Hosokawa, Hiroyuki; Dip, Phat Vinh; Merkulova, Maria et al. (2013) The N termini of a-subunit isoforms are involved in signaling between vacuolar H+-ATPase (V-ATPase) and cytohesin-2. J Biol Chem 288:5896-913
Shiba, Yoko; Kametaka, Satoshi; Waguri, Satoshi et al. (2013) ArfGAP3 regulates the transport of cation-independent mannose 6-phosphate receptor in the post-Golgi compartment. Curr Biol 23:1945-51
Chen, Pei-Wen; Jian, Xiaoying; Yoon, Hye-Young et al. (2013) ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. J Biol Chem 288:5849-60

Showing the most recent 10 out of 40 publications