To determine a genome wide function in chromatin remodeling, we employed micrococcal nuclease (MNase)-seq analysis. We used cell lines that were conditionally deleted of Lsh through inducible cre-recombinase expression or lost Lsh through proteolytic degradation by using an auxin-inducible degron system. We found that Lsh protects MNase accessibility at transcriptional regulatory regions characterized by DNase I hypersensitivity and certain histone 3 (H3) tail modifications associated with enhancers. Lsh mediated changes in nucleosome occupancy are independent of DNA methylation level and are characterized by reduced H3 occupancy. While Lsh mediated nucleosome occupancy prevents binding sites for transcription factors in wild type cells, depletion of Lsh leads to an increase in binding of ectopically expressed tissue specific transcription factors to their respective binding sites. Our data suggests that Lsh mediated chromatin remodeling can modulate nucleosome positioning at a subset of putative enhancers. This in turn contributes to the preservation of cellular identity through regulation of transcription factor binding. Our data suggest that Lsh mediated changes of nucleosome density are a primary consequence of Lsh function and DNA methylation changes are subsequent events. We identified a specific role for Lsh in guarding and preserving chromatin structure to prevent access to tissue specific enhancers or regulatory regions. Revealing Lsh molecular function on chromatin provides insights in the pathophysiology of the ICF syndrome.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010014-24
Application #
10014324
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
24
Fiscal Year
2019
Total Cost
Indirect Cost
Name
National Cancer Institute Division of Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Ren, Jianke; Hathaway, Nathaniel A; Crabtree, Gerald R et al. (2018) Tethering of Lsh at the Oct4 locus promotes gene repression associated with epigenetic changes. Epigenetics 13:173-181
Han, Yixing; Ren, Jianke; Lee, Eunice et al. (2017) Lsh/HELLS regulates self-renewal/proliferation of neural stem/progenitor cells. Sci Rep 7:1136
He, Xiaozhen; Yan, Bin; Liu, Shuang et al. (2016) Chromatin Remodeling Factor LSH Drives Cancer Progression by Suppressing the Activity of Fumarate Hydratase. Cancer Res 76:5743-5755
Han, Yixing; Gao, Shouguo; Muegge, Kathrin et al. (2015) Advanced Applications of RNA Sequencing and Challenges. Bioinform Biol Insights 9:29-46
Jiang, Y; Yan, B; Lai, W et al. (2015) Repression of Hox genes by LMP1 in nasopharyngeal carcinoma and modulation of glycolytic pathway genes by HoxC8. Oncogene 34:6079-91
Ren, Jianke; Briones, Victorino; Barbour, Samantha et al. (2015) The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. Nucleic Acids Res 43:1444-55
Terashima, Minoru; Barbour, Samantha; Ren, Jianke et al. (2015) Effect of high fat diet on paternal sperm histone distribution and male offspring liver gene expression. Epigenetics 10:861-71
Lungu, Cristiana; Muegge, Kathrin; Jeltsch, Albert et al. (2015) An ATPase-deficient variant of the SNF2 family member HELLS shows altered dynamics at pericentromeric heterochromatin. J Mol Biol 427:1903-15
Yu, Weishi; McIntosh, Carl; Lister, Ryan et al. (2014) Genome-wide DNA methylation patterns in LSH mutant reveals de-repression of repeat elements and redundant epigenetic silencing pathways. Genome Res 24:1613-23
Yu, Weishi; Briones, Victorino; Lister, Ryan et al. (2014) CG hypomethylation in Lsh-/- mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity. Proc Natl Acad Sci U S A 111:5890-5

Showing the most recent 10 out of 15 publications