Several methods have been developed to address (i) protein docking;(ii) helical symmetry description and (iii) protein folding using docking techniques. (i) Symmetric protein complexes are abundant in the living cell. Predicting their atomic structure can shed light on the mechanism of many important biological processes. Symmetric docking methods aim to predict the structure of these complexes given the unbound structure of a single monomer, or its model. Symmetry constraints reduce the search-space of these methods and make the prediction easier compared to asymmetric protein-protein docking. However, the challenge of modeling the conformational changes that the monomer might undergo is a major obstacle. In this article, we present SymmRef, a novel method for refinement and reranking of symmetric docking solutions. The method models backbone and side-chain movements and optimizes the rigid-body orientations of the monomers. The backbone movements are modeled by normal modes minimization and the conformations of the side-chains are modeled by selecting optimal rotamers. Since solved structures of symmetric multimers show asymmetric side-chain conformations, we do not use symmetry constraints in the side-chain optimization procedure. The refined models are re-ranked according to an energy score. We tested the method on a benchmark of unbound docking challenges. The results show that the method significantly improves the accuracy and the ranking of symmetric rigid docking solutions. (ii) Assemblies with helical symmetry can be conveniently formulated in many distinct ways. Here, a new convention is presented which unifies the two most commonly used helical systems for generating helical assemblies from asymmetric units determined by X-ray fibre diffraction and EM imaging. A helical assembly is viewed as being composed of identical repetitive units in a one- or two-dimensional lattice, named 1-D and 2-D helical systems, respectively. The unification suggests that a new helical description with only four parameters [n(1), n(2), twist, rise], which is called the augmented 1-D helical system, can generate the complete set of helical arrangements, including coverage of helical discontinuities (seams). A unified four-parameter characterization implies similar parameters for similar assemblies, can eliminate errors in reproducing structures of helical assemblies and facilitates the generation of polymorphic ensembles from helical atomic models or EM density maps. Further, guidelines are provided for such a unique description that reflects the structural signature of an assembly, as well as rules for manipulating the helical symmetry presentation. (iii) The pathways by which proteins fold into their specific native structure are still an unsolved mystery. Currently, many methods for protein structure prediction are available, and most of them tackle the problem by relying on the vast amounts of data collected from known protein structures. These methods are often not concerned with the route the protein follows to reach its final fold. This work is based on the premise that proteins fold in a hierarchical manner. We present FOBIA, an automated method for predicting a protein structure. FOBIA consists of two main stages: the first finds matches between parts of the target sequence and independently folding structural units using profile-profile comparison. The second assembles these units into a 3D structure by searching and ranking their possible orientations toward each other using a docking-based approach. We have previously reported an application of an initial version of this strategy to homology based targets. Since then we have considerably enhanced our method's abilities to allow it to address the more difficult template-based target category. This allows us to now apply FOBIA to the template-based targets of CASP8 and to show that it is both very efficient and promising. Our method can provide an alternative for template-based structure prediction, and in particular, the docking-basedranking technique presented here can be incorporated into any profile-profile comparison based method.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
Application #
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Cancer Institute Division of Basic Sciences
Zip Code
Li, Shuai; Jang, Hyunbum; Zhang, Jian et al. (2018) Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 26:513-525.e2
Kuzu, Guray; Keskin, Ozlem; Nussinov, Ruth et al. (2018) PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Corrigendum. Acta Crystallogr D Struct Biol 74:65-66
Qi, Ruxi; Wei, Guanghong; Ma, Buyong et al. (2018) Replica Exchange Molecular Dynamics: A Practical Application Protocol with Solutions to Common Problems and a Peptide Aggregation and Self-Assembly Example. Methods Mol Biol 1777:101-119
Xu, Liang; Ma, Buyong; Nussinov, Ruth et al. (2018) Correction to Familial Mutations May Switch Conformational Preferences in ?-Synuclein Fibrils. ACS Chem Neurosci 9:1866-1867
Ren, Baiping; Hu, Rundong; Zhang, Mingzhen et al. (2018) Experimental and Computational Protocols for Studies of Cross-Seeding Amyloid Assemblies. Methods Mol Biol 1777:429-447
Li, Xuhua; Dong, Xuewei; Wei, Guanghong et al. (2018) The distinct structural preferences of tau protein repeat domains. Chem Commun (Camb) 54:5700-5703
Ozdemir, E Sila; Jang, Hyunbum; Gursoy, Attila et al. (2018) Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2. J Biol Chem 293:3685-3699
Yang, Yi-An; Lee, Sohyoung; Zhao, Jun et al. (2018) In vivo tropism of Salmonella Typhi toxin to cells expressing a multiantennal glycan receptor. Nat Microbiol 3:155-163
Ozdemir, E Sila; Jang, Hyunbum; Gursoy, Attila et al. (2018) Arl2-Mediated Allosteric Release of Farnesylated KRas4B from Shuttling Factor PDE?. J Phys Chem B 122:7503-7513
Wang, Meryl; Zhu, David; Zhu, Jianwei et al. (2018) Local and global anatomy of antibody-protein antigen recognition. J Mol Recognit 31:e2693

Showing the most recent 10 out of 84 publications