Specific Aim 1. To identify key differentiation genes We hypothesized that epigenetic dysregulation of neural crest stem cells and/or sympathoadrenal progenitors contributes to neuroblastoma initiation, tumorigenesis and progression. Moreover, by targeting critical chromatin regulators that keep neuroblastoma in a self-renewal state we should be able to suppress growth and induce differentiation. To do this we performed an epigenetic focused siRNA screen to identify genes that control NB cell proliferation and differentiation using a high-throughput, high content imaging screen. We identified 53 candidate genes whose loss of expression results in a decrease in the number of NB cells and of these, 16 also induce morphologic and biochemical evidence of differentiation. A secondary screen using additional siRNAs excluded genes which may have resulted from off-target effects of siRNAs. Four of the candidates had already been shown to affect NB cell growth and differentiation. To prioritize those hits that would be amenable to drug development, we performed an additional screen of a tool compound library of 20 small molecule inhibitors of chromatin regulators. We evaluated the growth and differentiation in 8 NB cell lines and 2 immortal, but not transformed cell lines after exposure for 7days to 8 different drug concentrations. The secondary chemical screen identified EZH2 and SETD8 as druggable NB targets.
Specific Aim 2. To characterize molecular mechanisms of action of growth and differentiation genes Our group was the first to identify that EZH2 expression was elevated in NB tumors and functioned to suppress tumor suppressor genes like CASZ1 as well as differentiation genes (Wang et al Cancer Res. 2012). We have continued our study of EZH2 as it was also found in our high-content imaging epigenetic screen that loss of EZH2 expression led to a decrease in cell growth and an increase in differentiation of NB cells. We collaborated with Dr. Kim Stegmaier's group at Dana-Farber Cancer Center and Boston Children's Hospital to examine more broadly the role of EZH2 in NB. In this study which was recently published we found using a CRISPR library that NB cell growth was dependent on the PRC2 complex and loss of any component of the PRC2 complex of which EZH2 contains the methylase activity resulted in loss of NB cell growth. Additionally clinically relevant small molecule inhibitors of EZH2 showed activity in NB cell line and NB Patient Derived xenografts as single agents and synergistic activity with HDAC inhibitors such as Panobinostat. Detailed mechanistic studies revealed that a driver of EZH2 expression was MYCN which is amplified in some 30% of high-risk NB patients and EZH2 functioned to suppress differentiation associated gene programs. A pediatric phase I evaluation of Tazemetostat is ongoing for INI deleted rhabdoid tumors and synovial sarcomas, and our study provides convincing pre-clinical rationale for the assessment in NB patients. This study was recently published in Chen, L. et al J. Clin. Invest. 128:458-462, 2018.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010788-12
Application #
9779708
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Souza, Bárbara Kunzler; da Costa Lopez, Patrícia Luciana; Menegotto, Pâmela Rossi et al. (2018) Targeting Histone Deacetylase Activity to Arrest Cell Growth and Promote Neural Differentiation in Ewing Sarcoma. Mol Neurobiol 55:7242-7258
Hua, Zhongyan; Zhan, Yue; Zhang, Simeng et al. (2018) P53/PUMA are potential targets that mediate the protection of brain-derived neurotrophic factor (BDNF)/TrkB from etoposide-induced cell death in neuroblastoma (NB). Apoptosis 23:408-419
Chen, Liying; Alexe, Gabriela; Dharia, Neekesh V et al. (2018) CRISPR-Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J Clin Invest 128:446-462
Bhaskaran, Natarajan; Liu, Zhihui; Saravanamuthu, Senthil S et al. (2018) Identification of Casz1 as a Regulatory Protein Controlling T Helper Cell Differentiation, Inflammation, and Immunity. Front Immunol 9:184
Liu, Zhihui; Thiele, Carol J (2017) When LMO1 Meets MYCN, Neuroblastoma Is Metastatic. Cancer Cell 32:273-275
Liu, Z; Lam, N; Wang, E et al. (2017) Identification of CASZ1 NES reveals potential mechanisms for loss of CASZ1 tumor suppressor activity in neuroblastoma. Oncogene 36:97-109
Veschi, Veronica; Thiele, Carol J (2017) High-SETD8 inactivates p53 in neuroblastoma. Oncoscience 4:21-22
Veschi, Veronica; Liu, Zhihui; Voss, Ty C et al. (2017) Epigenetic siRNA and Chemical Screens Identify SETD8 Inhibition as a Therapeutic Strategy for p53 Activation in High-Risk Neuroblastoma. Cancer Cell 31:50-63
Wylie, Luke A; Hardwick, Laura J A; Papkovskaia, Tatiana D et al. (2015) Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma. Dis Model Mech 8:429-41
Liu, Zhihui; Li, Wenling; Ma, Xuefei et al. (2014) Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J Biol Chem 289:29801-16

Showing the most recent 10 out of 22 publications