IL-12 IMMUNOCYTOKINE: --- Targeted delivery of IL-12 might turn this cytokine into a safer, more effective cancer therapeutic. We have described a novel immunocytokine, NHS-IL12, consisting of two molecules of IL-12 fused to a tumor necrosis-targeting human IgG1 (NHS76). NHS-IL12 was superior to recombinant IL-12 when evaluated as an anti-tumor agent in three murine tumor models. Mechanistic studies utilizing immune cell subset-depleting antibodies, flow cytometric methods, and in vitro cytotoxicity and ELISA assays all indicated that the anti-tumor effects of NHS-IL12 were primarily CD8+ T cell-dependent and likely IL-12-mediated. Combining NHS-IL12 treatment with a cancer vaccine, radiation, or chemotherapy resulted in greater anti-tumor effects than each individual therapy alone. These preclinical findings provide a rationale for the clinical testing of this immunocytokine, both as a single agent and in combination with vaccines, radiation and chemotherapy. IL-15 IMMUNOCYTOKINE:--- We have examined the immunomodulatory and anti-tumor effects of the IL-15/Ra-Fc immunocytokine in tumor-free and highly metastatic tumor-bearing mice. Here, the IL-15/Ra-Fc immunocytokine significantly expanded natural killer (NK) and CD8+ T cells. In examining NK cell subsets, the greatest significant increase was in highly cytotoxic and migrating NK cells, leading to enhanced function on a per-cell basis. CD8+ T cell subset analysis determined that the IL-15/Ra-Fc immunocytokine significantly increased memory CD8+ T cells. In 4T1 breast tumor-bearing mice, the IL-15/Ra-Fc immunocytokine induced significant anti-tumor activity against spontaneous pulmonary metastases, depending on CD8+ T and NK cells, and resulting in prolonged survival. Similar anti-tumor activity was seen in the experimental pulmonary metastasis model of CT26 colon carcinoma cells, particularly when the IL-15/Ra-Fc immunocytokine was combined with a cocktail of checkpoint inhibitors, anti-CTLA-4 and anti-PD-L1. IDO INHIBITOR: --- Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase (IDO) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We have shown that peptide-specific T-cell lines stimulated with DCs pulsed with peptide produced significantly more IFN-gamma, TNF-alpha, GM-CSF and IL-8 if the DCs were treated with epacadostat. These T cells also displayed higher levels of tumor cell lysis on a per cell basis. Epacadostat also significantly decreased Treg proliferation.These studies show for the first time several effects of epacadostat on human DCs, and subsequent effects on CTL and Tregs, and provide a rationale as to how epacadostat could potentially increase the efficacy of immunotherapeutics, including cancer vaccines. BRACHYURY: --- The epithelial-mesenchymal transition (EMT) has been implicated as an important process in tumor cell invasion, metastasis, and drug resistance. The transcription factor brachyury has recently been described as a driver of EMT of human carcinoma cells. The level of brachyury expression in breast cancer cells was positively associated with their ability to invade the extracellular matrix, efficiently form mammospheres in vitro, and resist the cytotoxic effect of docetaxel. A comparison of survival among breast cancer patients treated with tamoxifen in the adjuvant setting who had tumors with high vs low brachyury mRNA expression demonstrated that high expression of brachyury is associated as an independent variable with higher risk of recurrence and distant metastasis. We also demonstrated that brachyury-specific T cells can lyse human breast carcinoma cells. These studies provide the rationale for the use of a vaccine targeting brachyury for the therapy of human breast cancer, either as a monotherapy or in combination therapies. TRI-ADENO: --- Phenotypic heterogeneity of human carcinoma lesions, including heterogeneity in expression of tumor-associated antigens (TAAs), is a well-established phenomenon. Carcinoembryonic antigen (CEA), MUC1, and brachyury are diverse TAAs, each of which is expressed on a wide range of human tumors. We report here the development of novel recombinant Ad5 [E1-, E2b-]-brachyury and-MUC1 vaccine constructs, each capable of activating antigen-specific human T cells in vitro and inducing antigen-specific CD4+ and CD8+ T cells in vaccinated mice. We also describe the use of a combination of the three vaccines (designated Tri-Ad5) of Ad5 [E1-, E2b-]-CEA, Ad5 [E1-, E2b-]-brachyury and Ad5 [E1-, E2b-]-MUC1, and demonstrate that there is minimal to no antigenic competition in in vitro studies of human dendritic cells, or in murine vaccination studies. The studies reported herein support the rationale for the application of Tri-Ad5 as a therapeutic modality to induce immune responses to a diverse range of human TAAs for potential clinical studies. BLADDER CANCER: --- In this study, an aggressive, bioluminescent orthotopic bladder cancer model, MB49 tumor cells transfected with luciferase (MB49(luc)), was used to study the antitumor effects of avelumab, an antibody to PD-L1. MB49(luc) murine tumor cells form multifocal tumors on the mucosal wall of the bladder reminiscent of non-muscle invasive, non-metastatic urothelial carcinomas. MB49(luc) bladder tumors are highly positive for the expression of PD-L1, and avelumab administration induced significant (P 0.05) antitumor effects. These antitumor effects were more dependent on the presence of CD4 than CD8 T cells, as determined by in vivo immune cell depletions. The findings suggest that in this bladder tumor model, interruption of the immune-suppressive PD-1/PD-L1 complex releases a local adaptive immune response that, in turn, reduces tumor growth. This bladder tumor model can be used to further identify host antitumor immune mechanisms and evaluate combinations of immune-based therapies for carcinoma in situ and non-muscle invasive, non-metastatic urothelial carcinoma, to provide the rationale for subsequent clinical studies. CHORDOMA: --- Chordoma, a rare bone tumor derived from the notochord, has been shown to be resistant to conventional therapies. Checkpoint inhibition has shown great promise in immune-mediated therapy of diverse cancers. The anti-PD-L1 mAb avelumab is unique among checkpoint inhibitors in that it is a fully human IgG1 capable of mediating antibody-dependent cell-mediated cytotoxicity (ADCC) of PD-L1-expressing tumor cells. We investigated avelumab as a potential therapy for chordoma. We examined four chordoma cell lines, first for expression of PD-L1, and in vitro for ADCC killing using NK cells and avelumab. PD-L1 expression was markedly upregulated by IFN-gamma in all four chordoma cell lines, which significantly increased sensitivity to ADCC. Brachyury is a transcription factor that is uniformly expressed in chordoma. Clinical trials are ongoing in which chordoma patients are treated with brachyury-specific vaccines. Co-incubating chordoma cells with brachyury-specific CD8+ T cells resulted in significant upregulation of PD-L1 on the tumor cells, mediated by the CD8+ T cells' IFN-gamma production, and increased sensitivity of chordoma cells to avelumab-mediated ADCC. Residential cancer stem cell subpopulations of chordoma cells were also killed by avelumab-mediated ADCC to the same degree as non-cancer stem cell populations. These findings suggest that as a monotherapy for chordoma, avelumab may enable endogenous NK cells, while in combination with T-cell immunotherapy, such as a vaccine, avelumab may enhance NK-cell killing of chordoma cells via ADCC.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIABC010944-09
Application #
9343746
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Basic Sciences
Department
Type
DUNS #
City
State
Country
Zip Code
Knudson, Karin M; Hicks, Kristin C; Luo, Xiaoling et al. (2018) M7824, a novel bifunctional anti-PD-L1/TGF? Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology 7:e1426519
Fujii, Rika; Schlom, Jeffrey; Hodge, James W (2018) A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab. J Neurosurg 128:1419-1427
McGee, Heather M; Daly, Megan E; Azghadi, Sohelia et al. (2018) Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site. Int J Radiat Oncol Biol Phys 101:1259-1270
Friedman, Jay; Morisada, Megan; Sun, Lillian et al. (2018) Inhibition of WEE1 kinase and cell cycle checkpoint activation sensitizes head and neck cancers to natural killer cell therapies. J Immunother Cancer 6:59
Grenga, Italia; Donahue, Renee N; Gargulak, Morgan L et al. (2018) Anti-PD-L1/TGF?R2 (M7824) fusion protein induces immunogenic modulation of human urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. Urol Oncol 36:93.e1-93.e11
Fujii, Rika; Jochems, Caroline; Tritsch, Sarah R et al. (2018) An IL-15 superagonist/IL-15R? fusion complex protects and rescues NK cell-cytotoxic function from TGF-?1-mediated immunosuppression. Cancer Immunol Immunother 67:675-689
Malamas, Anthony S; Hammond, Scott A; Schlom, Jeffrey et al. (2017) Combination therapy with an OX40L fusion protein and a vaccine targeting the transcription factor twist inhibits metastasis in a murine model of breast cancer. Oncotarget 8:90825-90841
Jochems, Caroline; Tritsch, Sarah R; Pellom, Samuel Troy et al. (2017) Analyses of functions of an anti-PD-L1/TGF?R2 bispecific fusion protein (M7824). Oncotarget 8:75217-75231
Morillon 2nd, Y Maurice; Hammond, Scott A; Durham, Nicholas M et al. (2017) Enhanced immunotherapy by combining a vaccine with a novel murine GITR ligand fusion protein. Oncotarget 8:73469-73482
Fallon, Jonathan K; Vandeveer, Amanda J; Schlom, Jeffrey et al. (2017) Enhanced antitumor effects by combining an IL-12/anti-DNA fusion protein with avelumab, an anti-PD-L1 antibody. Oncotarget 8:20558-20571

Showing the most recent 10 out of 55 publications