The Dyskeratosis congenita (DC) [CAS 10374] study provides comprehensive clinical and molecular evaluations to patients with DC and their family members, to better understand the role of telomere biology defects in this disorder. DC is an inherited bone marrow failure syndrome (IBMFS) characterized by abnormal nails, lacey reticular pigmentation, oral leukoplakia, very short telomeres, and significantly elevated risks of aplastic anemia and cancer. Family pedigrees in DC indicate that there are multiple modes of inheritance (e.g. X-linked, autosomal dominant and autosomal recessive), although many cases are sporadic (i.e., lack a family history). We have discovered four novel causes of DC: (1) Germline mutations in TINF2 provided the first evidence that disruption of the shelterin protein protection complex can cause human disease; (2) DC-causing mutations in WRAP53 were first proof that mislocalization of telomerase could cause human illness. (3) Exome sequencing discovered mutations in RTEL1, a DNA helices and telomere biology gene, as a novel cause of DC, and (4) We also showed that mutations in another component of shelterin, TPP1, encoded by ACD cause DC and result in telomerase processivity defects. All participants in the DC cohort are evaluated for mutations in the DC-associated genes. We perform targeted gene sequencing and whole exome sequencing to discover the causes of DC in all enrolled families. Our DC studies have been used to demonstrate that very short telomeres (by Flow-FISH) in peripheral blood leukocyte subsets comprise a diagnostic abnormality for this disorder. Analysis of the cancers in these families demonstrates a pattern that is strikingly similar to that observed in Fanconi anemia (i.e., MDS, AML, squamous cell cancers of the head/neck and anorectal cancers). The DC Biospecimen Repository is a rich resource used to understand the molecular consequences of telomere biology abnormalities. We are also exploring several new hypotheses related to DC pathogenesis, including epigenetic gene regulation and chromosomal abnormalities. Detailed characterization of the clinical phenotype and medical complications is ongoing. Telomere Length in Target Tissues [CAS 10373] is now closed. It evaluated intra-individual telomere length measured by QPCR of DNA derived from blood, buccal cells, and fibroblasts from IBMFS patients as well as the correlation between flow-FISH and QPCR. It found that in general, fibroblast telomeres were longer than blood or buccal cell telomeres but that there was significant intra-individual correlation between tissue types. This pilot study forms the basis for larger methodological studies of telomere biology and cancer risk. We are also investigating Telomere Length as Cancer Risk Factor [CAS 10371]. Numerous studies suggest that short surrogate tissue TL is a cancer risk factor. Our previous case-control studies found that short telomeres are associated with increased risk of ovarian and gastric cancer. However, our cohort study of TL and prostate cancer did not find the same association. Our meta-analysis on the association between TL in surrogate tissues and cancer risk which suggests short TL and overall cancer are associated but this may be driven by stronger effects in specific cancers. The ORs derived from retrospective studies were much higher than for prospective studies (2.9 versus 1.16), which suggests reverse causation bias and possible contribution of cancer therapy prior to sample collection. Study heterogeneity and minimal or no data on certain cancer sites were also limitations of these analyses. Ongoing work includes many collaborative studies of TL and cancer designed to 1) determine if TL is associated with risk of specific cancers or cancer-related outcomes, 2) determine differences in TL and cancer associations in case-control versus cohort studies, and 3) use these studies as building blocks for germline (i.e., surrogate) and somatic tissue studies aimed at better understanding the contribution of telomere biology to cancer etiology Genetic Variants That Correlate With Telomere Length [CAS 10371] have been evaluated through analyses of SNP data derived from the NCI CGEMS GWAS of prostate and breast cancer. We found that 13 SNPs from 4 genes were associated with TL. We also collaborated with Harvard University on a genome-wide association study (GWAS) of TL. That study confirmed a SNP in TERC as associated with TL, but, similar to other studies, did not find strong associations between SNPs at other sites and TL. A new project, Telomere length after HSCT in patients with acquired severe aplastic anemia [CAS 10508] was initiated which seeks to understand the role of telomere biology in outcomes after hematopoictic stem cell transplant (HCT) for acquired severe aplastic anemia (SAA). In collaboration with the National Marrow Donor Program (NMDP), we showed that donor TL is significantly associated with clinical outcomes in patients undergoing HCT for SAA. Ongoing analyses seek to validate these findings in other patients undergoing HCT. Population genetic studies of telomere biology genes [CAS 10372] continue to provide important insight into their evolutionary history. Ongoing studies include characterization of the functional consequences of germline variants in telomere biology genes and correlation with clinical findings.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Investigator-Initiated Intramural Research Projects (ZIA)
Project #
1ZIACP010190-13
Application #
9770276
Study Section
Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Cancer Epidemiology and Genetics
Department
Type
DUNS #
City
State
Country
Zip Code
Savage, Sharon A (2018) Beginning at the ends: telomeres and human disease. F1000Res 7:
Gadalla, Shahinaz M; Aubert, Geraldine; Wang, Tao et al. (2018) Donor telomere length and causes of death after unrelated hematopoietic cell transplantation in patients with marrow failure. Blood 131:2393-2398
Ungar, Rachel A; Giri, Neelam; Pao, Maryland et al. (2018) Complex phenotype of dyskeratosis congenita and mood dysregulation with novel homozygous RTEL1 and TPH1 variants. Am J Med Genet A 176:1432-1437
Turcotte, Lucie M; Wang, Tao; Hemmer, Michael T et al. (2018) Donor body mass index does not predict graft versus host disease following hematopoietic cell transplantation. Bone Marrow Transplant 53:932-937
Wang, Youjin; Zhou, Weiyin; Alter, Blanche P et al. (2018) Chromosomal Aberrations and Survival after Unrelated Donor Hematopoietic Stem Cell Transplant in Patients with Fanconi Anemia. Biol Blood Marrow Transplant 24:2003-2008
Dagnall, Casey L; Hicks, Belynda; Teshome, Kedest et al. (2017) Effect of pre-analytic variables on the reproducibility of qPCR relative telomere length measurement. PLoS One 12:e0184098
Ward, Suzanne C; Savage, Sharon A; Giri, Neelam et al. (2017) Progressive reticulate skin pigmentation and anonychia in a patient with bone marrow failure. J Am Acad Dermatol 77:1194-1198
Wang, Youjin; Wang, Tao; Dagnall, Casey et al. (2017) Relative Telomere Length before Hematopoietic Cell Transplantation and Outcome after Unrelated Donor Hematopoietic Cell Transplantation for Acute Leukemia. Biol Blood Marrow Transplant 23:1054-1058
Khandelwal, Pooja; Millard, Heather R; Thiel, Elizabeth et al. (2017) Hematopoietic Stem Cell Transplantation Activity in Pediatric Cancer between 2008 and 2014 in the United States: A Center for International Blood and Marrow Transplant Research Report. Biol Blood Marrow Transplant 23:1342-1349
Khincha, Payal P; Bertuch, Alison A; Agarwal, Suneet et al. (2017) Pulmonary arteriovenous malformations: an uncharacterised phenotype of dyskeratosis congenita and related telomere biology disorders. Eur Respir J 49:

Showing the most recent 10 out of 52 publications