During the present reporting period, no further laboratory work was conducted on this project due to budgetary limitations. However, a backlog of laboratory findings on this project were brought forward to the publication stage during this reporting period. First, we reported that the novel selective dopamine D3 receptor antagonist YQA14 inhibits intravenous cocaine self-administration under fixed-ratio reinforcement in laboratory rats, and also significantly attenuates intravenous cocaine self-administration under progressive-ratio reinforcement in laboratory rats - revealing a significant decrease in incentive motivation to self-administer cocaine. At the same time, YQA14 does not alter self-administration of the natural rewarding substance sucrose. This is in line with our previous findings with our two lead proof-of-concept compounds SB277011A and NGB2904 that selective dopamine D3 receptor antagonism blocks drug reward but not natural biologically essential rewards such as food, water, or sex. Also, we reported that YQA14 does not alter cocaine-enhanced locomotion at doses that significantly inhibit cocaine self-administration, showing that YQA14's anti-cocaine effect is not merely due to nonspecific inhibition of motoric ability. In addition, we found that YQA14 dose-dependently inhibits intravenous cocaine self-administration (under both fixed-ratio and progressive-ratio reinforcement conditions) in wild-type mice but not in dopamine D3 receptor gene-deleted mice. This shows that the anti-addiction effects of YQA14 are indeed mediated via the dopamine D3 receptor in the brain. Thus, YQA14 now joins SB277011A and NGB2904 as an extremely promising anti-addiction medication, adding yet more weight to our previous findings that selective dopamine D3 receptor antagonists appear to have anti-addiction, anti-craving, and anti-relapse efficacy that may well translate to clinical efficacy in human drug addiction. Second, using two new additional animal behavioral models, we reported that our lead proof-of-concept compound SB277011A reverses conditioned place aversion produced by naloxone-precipitated opiate withdrawal in rats - suggesting efficacy of selective dopamine D3 receptor antagonists for treating opiate withdrawal dysphoria. Third, we reported that SB277011A very robustly inhibits incubation of cocaine craving in laboratory rats, with locus of action in the brain being the nucleus accumbens and central amygdala (as determined by discrete focal intracerebral microinjections of SB277011A) - suggesting potential efficacy of selective dopamine D3 antagonists for treating time-dependent incubation of psychostimulant craving in human addicts. Such findings significantly broaden the range of pathognomonic symptoms of drug addiction against which selective dopamine D3 antagonists show efficacy - a very important development in this research field. Fourth, we reported that mice lacking D3 receptors (D3 knockout mice) show increased vulnerability to cocaine, an effect that we attribute to neural compensatory mechanisms. Fifth, we reported that D3 receptor blockade induced by the novel D3 receptor antagonist YQA14 (see above) significantly attenuates cocaine-induced conditioned place preference in mice. Sixth, we reported that our primary proof-of-concept selective D3 receptor antagonist SB277011A significantly attenuates morphine-triggered reactivation of the expression of cocaine-induced conditioned place preference in laboratory rats. We consider this last finding to be exceptionally important, as it is the first report - in the entire world literature - suggesting that selective dopamine D3 receptor blockade may have clinical efficacy against the cross-triggering of relapse phenomenon (in which other addictive drugs than the one primarily used by the addicted patient have the ability to trigger relapse to drug-seeking of the primary addictive drug) that is so common and pathognomonic in addiction.

Project Start
Project End
Budget Start
Budget End
Support Year
9
Fiscal Year
2013
Total Cost
$283,729
Indirect Cost
Name
National Institute on Drug Abuse
Department
Type
DUNS #
City
State
Country
Zip Code
Rice, Onarae V; Ashby Jr, Charles R; Dixon, Clark et al. (2018) Selective dopamine D3 receptor antagonism significantly attenuates stress-induced immobility in a rat model of post-traumatic stress disorder. Synapse 72:e22035
Zhan, Jia; Jordan, Chloe J; Bi, Guo-Hua et al. (2018) Genetic deletion of the dopamine D3 receptor increases vulnerability to heroin in mice. Neuropharmacology 141:11-20
You, Zhi-Bing; Gao, Jun-Tao; Bi, Guo-Hua et al. (2017) The novel dopamine D3 receptor antagonists/partial agonists CAB2-015 and BAK4-54 inhibit oxycodone-taking and oxycodone-seeking behavior in rats. Neuropharmacology 126:190-199
Sushchyk, Sarah; Xi, Zheng-Xiong; Wang, Jia Bei (2016) Combination of Levo-Tetrahydropalmatine and Low Dose Naltrexone: A Promising Treatment for Prevention of Cocaine Relapse. J Pharmacol Exp Ther 357:248-57
Fraser, Kurt M; Haight, Joshua L; Gardner, Eliot L et al. (2016) Examining the role of dopamine D2 and D3 receptors in Pavlovian conditioned approach behaviors. Behav Brain Res 305:87-99
Kumar, Vivek; Bonifazi, Alessandro; Ellenberger, Michael P et al. (2016) Highly Selective Dopamine D3 Receptor (D3R) Antagonists and Partial Agonists Based on Eticlopride and the D3R Crystal Structure: New Leads for Opioid Dependence Treatment. J Med Chem 59:7634-50
Ashby Jr, Charles R; Rice, Onarae V; Heidbreder, Christian A et al. (2015) The selective dopamine D3 receptor antagonist SB-277011A significantly accelerates extinction to environmental cues associated with cocaine-induced place preference in male Sprague-Dawley rats. Synapse 69:512-4
Rice, Onarae V; Schonhar, Charles A; Gaál, J et al. (2015) The selective dopamine D? receptor antagonist SB-277011-A significantly decreases binge-like consumption of ethanol in C57BL/J6 mice. Synapse 69:295-8
Ashby Jr, Charles R; Rice, Onarae V; Heidbreder, Christian A et al. (2015) The selective dopamine D? receptor antagonist SB-277011A attenuates drug- or food-deprivation reactivation of expression of conditioned place preference for cocaine in male Sprague-Dawley rats. Synapse 69:336-44
Song, Rui; Bi, Guo-Hua; Zhang, Hai-Ying et al. (2014) Blockade of D3 receptors by YQA14 inhibits cocaine's rewarding effects and relapse to drug-seeking behavior in rats. Neuropharmacology 77:398-405

Showing the most recent 10 out of 20 publications