Taste controls an animals food intake. For the past two decades, our focus has been the isolation and characterization of genes encoding taste receptors and using these to mark the cells, define the corresponding signaling pathways, dissect receptor specificity, generate topographic maps, and trace the respective neuronal connectivity circuits. This research continues to involve a long standing and wide ranging collaboration with Charles Zuker and his groups at Columbia University. Together, we have now established that at the periphery there are 5 distinct classes of taste receptor cells that are selectively tuned to respond to sweet, bitter, sour, sodium salt and savory (umami) tastants and have demonstrated that activation of these cells elicit either appetitive or aversive responses accordingly. Taste information is transmitted to the nucleus of the solitary tract (NST) in the hind-brain through sensory neurons with cell bodies in the geniculate and petrosal ganglia. Projections from the NST diverge: conscious perception of taste quality is thought to involve a pathway that innervates the primary gustatory cortex in the insula; in addition, less well characterized circuits are believed to mediate immediate responses to tastants. Our current work focuses on understanding how taste information is transmitted to the brain and represented there to generate defined percepts and to guide behavior. We are using a battery of modern molecular genetic approaches to define and trace circuits involved and ultimately to relate these circuits to taste perception. These include: Ca-imaging techniques to assess the activity of neural ensembles; screening and sequencing approaches to identify markers for select subsets of taste responsive neuron; and optogenetic, pharmacogenetic, activation and silencing as well as other silencing and ablation approaches to modulate activity of specific parts of the taste circuitry. In this reporting period we have used optogenenetic and pharmacological approaches to examine how the primary taste cortex controls and directs taste responses. Our results have highlighted the importance of distinct fields within the gustatory cortex in the insula for sweet and bitter taste. Silencing these fields selectively impaired an animal's ability to distinguish sweet or bitter. Activation of the fields recapitulated the affective response of an animal to the corresponding tastant (attraction to sweet / aversion to bitter) and generated a sensory percept that the animal could recognize as either sweet or bitter. In mice, the odorant receptors are encoded by a family of more than 1000 genes. A fundamental feature of the mammalian olfactory system is that each olfactory sensory neuron expresses just a single member of this vast family of genes. However, the details of the control of odorant receptor gene expression remain unexplained. In a collaborative project with Leonardo Belluscio, we have demonstrated new aspects of regulation that contribute to the control of odorant gene expression and have devised a system that can reliably generate mice expressing a single odorant receptor in the vast majority of olfactory sensory neurons. Over the past year we have continued to characterize a transgenic mouse that expresses an octanal receptor in almost all olfactory sensory neurons. Although this transgenic mouse line has the potential to express a second olfactory receptor from the same synthetic promoter as the octanal receptor, surprisingly it rarely does. Indeed, whereas the octanal receptor is found in 90% of all olfactory receptor neurons, the other receptor (that responds to acetophenone) is present in just 5% of cells and these do not overlap with the cells expressing the octanal receptor. We are using deep sequencing strategies in the hope of uncovering the mechanisms that account for this completely unexpected gene expression pattern and believe that they will provide insight into the unusual expression pattern of this remarkable gene family of sensory receptors.

Project Start
Project End
Budget Start
Budget End
Support Year
24
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Dental & Craniofacial Research
Department
Type
DUNS #
City
State
Country
Zip Code
Wang, Li; Gillis-Smith, Sarah; Peng, Yueqing et al. (2018) The coding of valence and identity in the mammalian taste system. Nature 558:127-131
Lee, Hojoon; Macpherson, Lindsey J; Parada, Camilo A et al. (2017) Rewiring the taste system. Nature 548:330-333
Nguyen, Minh Q; Wu, Youmei; Bonilla, Lauren S et al. (2017) Diversity amongst trigeminal neurons revealed by high throughput single cell sequencing. PLoS One 12:e0185543
Barretto, Robert P J; Gillis-Smith, Sarah; Chandrashekar, Jayaram et al. (2015) The neural representation of taste quality at the periphery. Nature 517:373-6
Peng, Yueqing; Gillis-Smith, Sarah; Jin, Hao et al. (2015) Sweet and bitter taste in the brain of awake behaving animals. Nature 527:512-5
Oka, Yuki; Butnaru, Matthew; von Buchholtz, Lars et al. (2013) High salt recruits aversive taste pathways. Nature 494:472-5
Nguyen, Minh Q; Ryba, Nicholas J P (2012) A smell that causes seizure. PLoS One 7:e41899
Chen, Xiaoke; Gabitto, Mariano; Peng, Yueqing et al. (2011) A gustotopic map of taste qualities in the mammalian brain. Science 333:1262-6
Chandrashekar, Jayaram; Kuhn, Christina; Oka, Yuki et al. (2010) The cells and peripheral representation of sodium taste in mice. Nature 464:297-301
Nguyen, Minh Q; Marks, Carolyn A; Belluscio, Leonardo et al. (2010) Early expression of odorant receptors distorts the olfactory circuitry. J Neurosci 30:9271-9

Showing the most recent 10 out of 12 publications