Mucin-type O-linked glycosylation is a widespread and evolutionarily conserved protein modification catalyzed by a family of enzymes (PGANTs in Drosophila or pGalNAcTs in mammals) that transfer the sugar N-acetylgalactosamine (GalNAc) to the hydroxyl group of serines and threonines in proteins that are destined to be membrane-bound or secreted. Defects in this type of glycosylation are responsible for the human diseases familial tumoral calcinosis and Tn syndrome. Additionally, changes in O-glycosylation have been associated with tumor progression and metastasis. More recently, genome-wide association studies have identified the genes encoding the enzymes that are responsible for initiating O-glycosylation among those associated with HDL-cholesterol levels, triglyceride levels, congenital heart defects, colon cancer and bone mineral density. From these studies, it is apparent that this conserved protein modification has a multitude of biological roles. The focus of our research group is to elucidate the mechanistic roles of O-glycans during development in order to understand how they contribute to disease susceptibility and progression. Previous work from our group demonstrated that O-linked glycosylation is essential for viability in Drosophila. Our recent studies have demonstrated roles for this protein modification in the secretion of extracellular matrix (ECM) proteins. Specifically, we found that loss of one PGANT family member alters secretion of an ECM protein, thereby influencing basement membrane composition and disrupting integrin-mediated cell adhesion during Drosophila wing development. Likewise, we demonstrated that O-glycosylation also modulates the composition of the ECM during mammalian organ development, influencing integrin and FGF signaling, thereby affecting cell proliferation and growth of the developing salivary glands. These results highlight a conserved role for O-glycosylation in secretion and in the establishment of cellular microenvironments. Studies published this year elucidated the mechanism by which O-glycans influence secretion in the Drosophila digestive tract. We found that one member of this family (PGANT4) modulates secretion by glycosylating an essential component of the secretory apparatus (Tango1), conferring protection from furin-mediated proteolysis. Tango1 is an ER/Golgi transmembrane protein that coordinates packaging of large cargo into secretory vesicles. In the absence of PGANT4, Tango1 is cleaved, resulting in loss of secretory apparatus polarization, loss of secretory vesicle formation and disrupted secretion of proteins that line and protect the digestive tract. These studies have implications for the role of this protein modification in proper gut function in higher eukaryotes, as these genes are abundantly expressed in the stomach, small intestine and colon of mice and humans. We have also developed a system for real-time imaging of secretory vesicle formation and polarized secretion in a living organ, to define how various PGANT family members are involved in these processes. Using this system, we have defined the order of events that occur as vesicles are formed and eventually fuse with the apical membrane to secrete their contents into the extracellular space. We are also defining the role of specific actin structures in fusion and secretion events. Taking advantage of facile gene disruption, we are further investigating how the PGANTs are mediating effects on secretion and secretory apparatus structure through real-time imaging in organs where certain family members have been deleted. Finally, we are continuing to collaborate with the Tabak laboratory to investigate the effects of loss of O-glycosylation on other aspects of mammalian development. Specifically, we have found that loss of Galnt1 affects cardiac function in mice by influencing embryonic heart valve development. Galnt1-deficient mice displayed enlarged valves due to increased cell proliferation during development. Increased cell proliferation was accompanied by increases in certain ECM components and up-regulation of BMP and MAPK signaling pathways. This study provides the first evidence for the role of this protein modification in heart valve development and may represent a new model for idiopathic valve disease. In summary, we are using information gleaned from Drosophila to better focus on crucial aspects of development affected by O-glycosylation in more complex mammalian systems. We are also using real-time imaging within living organs to define the specific processes by which O-glycosylation influences secretion. Our hope is that the cumulative results of our research will elucidate the mechanisms by which this conserved protein modification operates in both normal development and disease susceptibility.
Showing the most recent 10 out of 25 publications